login
Smallest prime in decomposition of 2n into sum of two odd primes.
(Formerly M2273 N0899)
31

%I M2273 N0899 #52 Aug 31 2020 19:04:13

%S 3,3,3,5,3,3,5,3,3,5,3,5,7,3,3,5,7,3,5,3,3,5,3,5,7,3,5,7,3,3,5,7,3,5,

%T 3,3,5,7,3,5,3,5,7,3,5,7,19,3,5,3,3,5,3,3,5,3,5,7,13,11,13,19,3,5,3,5,

%U 7,3,3,5,7,11,11,3,3,5,7,3,5,7,3,5,3,5,7,3,5,7,3,3,5,7,11,11,3,3,5,3

%N Smallest prime in decomposition of 2n into sum of two odd primes.

%C See A020481 for another version.

%C a(A208662(n)) = A065091(n) and a(m) <> A065091(n) for m < A208662(n). - _Reinhard Zumkeller_, Feb 29 2012

%C Records are in A025019, their indices in A051610. - _Ralf Stephan_, Dec 29 2013

%C Note that these primes do not all belong to a twin prime pair. The first instance is a(110) = 23. - _Michel Marcus_, Aug 17 2020 from a suggestion by _Pierre CAMI_

%D D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 80.

%D N. Pipping, Neue Tafeln für das Goldbachsche Gesetz nebst Berichtigungen zu den Haussnerschen Tafeln, Finska Vetenskaps-Societeten, Comment. Physico Math. 4 (No. 4, 1927), pp. 1-27.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A002373/b002373.txt">Table of n, a(n) for n = 3..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GoldbachPartition.html">Goldbach Partition</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Goldbach%27s_conjecture">Goldbach's conjecture</a>

%H <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a>

%t Table[k = 2; While[q = Prime[k]; ! PrimeQ[2*n - q], k++]; q, {n, 3, 100}] (* _Jean-François Alcover_, Apr 26 2011 *)

%t Table[Min[Flatten[Select[IntegerPartitions[2*n,{2}],AllTrue[ #,OddQ] && AllTrue[#,PrimeQ]&]]],{n,3,100}] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Aug 31 2020 *)

%o (Haskell) a002373 n = head $ dropWhile ((== 0) . a010051 . (2*n -)) a065091_list -- _Reinhard Zumkeller_, Feb 29 2012

%o (PARI) a(n)=forprime(p=3,n,if(isprime(2*n-p), return(p))) \\ _Charles R Greathouse IV_, May 18 2015

%Y Cf. A002372, A002374, A014092, A065091, A010051.

%K nonn,nice,easy

%O 3,1

%A _N. J. A. Sloane_

%E More terms from _Ray Chandler_, Sep 19 2003