login
Numerators of continued fraction convergents to cube root of 6.
(Formerly M1918 N0756)
3

%I M1918 N0756 #32 Jul 05 2024 10:07:25

%S 1,2,9,20,149,467,237385,237852,1426645,7371077,8797722,16168799,

%T 24966521,66101841,91068362,157170203,3863153234,4020323437,

%U 7883476671,11903800108,43594876995,142688431093,4324247809785,17439679670233,178721044512115,28255364712584403

%N Numerators of continued fraction convergents to cube root of 6.

%D D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 67.

%D P. Seeling, Verwandlung der irrationalen Groesse ... in einen Kettenbruch, Archiv. Math. Phys., 46 (1866), 80-120.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Harvey P. Dale, <a href="/A002360/b002360.txt">Table of n, a(n) for n = 0..999</a>

%t Numerator[Convergents[Power[6, (3)^-1],30]] (* _Harvey P. Dale_, Oct 16 2011 *)

%o (PARI) a(n) = contfracpnqn(contfrac(6^(1/3), n))[1, 1]; \\ _Michel Marcus_, Aug 23 2013

%Y Cf. A002359 (denominators), A002949, A005486.

%K nonn,frac

%O 0,2

%A _N. J. A. Sloane_, _Herman P. Robinson_

%E Definition clarified by, and more terms from, Harvey P. Dale, Oct 16 2011

%E Offset changed by _Andrew Howroyd_, Jul 05 2024