login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002303 Generalized tangent numbers.
(Formerly M5023 N2166)
0
16, 272, 3968, 56320, 814080, 12207360, 191431680, 3149752320, 54428774400, 987559372800, 18797300121600, 374883257548800, 7822865085235200, 170560590520320000, 3879770715684864000, 91945674412720128000 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,1

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Letterio Toscano, Sulla Derivata di Ordinen della Funzione tg(x), Tohoku Math. J., 42 (1936), 144-154.

LINKS

Table of n, a(n) for n=4..19.

FORMULA

Ignoring the initial term a(4) = 16 and working with an offset of 0 the e.g.f. appears to be the rational function 16*(17+78*t+45*t^2)/(1-t)^10 = 272 + 3968*t + 56320*t^2/2! + .... - Peter Bala, Apr 23 2012

This rational function occurs in the series reversion (x-t*tan(x))^(-1) = x/(1-t) + 2*t/(1-t)^4*x^3/3! + 8*t*(2+3*t)/(1-t)^7*x^5/5! + 16*t*(17+78*t+45*t^2)/(1-t)^10*x^7/7! + ..., which is the e.g.f. for the triangle A059419 read by diagonals. - Peter Bala, Apr 23 2012

PROG

(PARI) a(n, k)=if(k<0, 0, if(n==1 && k==1, 1, if(k>n, 0, (k-1)*a(n-1, k-1)+(k+1)*a(n-1, k+1)))) for(n=0, 25, print1(a(n+6, n)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Nov 20 2006

CROSSREFS

A059419.

Sequence in context: A000487 A249391 A197622 * A158610 A221176 A231695

Adjacent sequences:  A002300 A002301 A002302 * A002304 A002305 A002306

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Nov 20 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 15:01 EDT 2019. Contains 328116 sequences. (Running on oeis4.)