login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002297 Numerator of (2/Pi)*Integral_{0..inf} (sin x / x)^n dx.
(Formerly M2262 N0893)
5

%I M2262 N0893

%S 1,1,3,2,115,11,5887,151,259723,15619,381773117,655177,20646903199,

%T 27085381,467168310097,2330931341,75920439315929441,12157712239,

%U 5278968781483042969,37307713155613,9093099984535515162569,339781108897078469,168702835448329388944396777

%N Numerator of (2/Pi)*Integral_{0..inf} (sin x / x)^n dx.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A002297/b002297.txt">Table of n, a(n) for n=1..100</a>

%H A. H. R. Grimsey, <a href="http://dx.doi.org/10.1080/14786444508521508">On the accumulation of chance effects and the Gaussian frequency distribution</a>, Phil. Mag., 36 (1945), 294-295.

%H R. G. Medhurst and J. H. Roberts, <a href="http://dx.doi.org/10.1090/S0025-5718-1965-0172446-8">Evaluation of the integral I_n(b) = (2/Pi)*Integral_{0..inf} (sin x / x)^n cos (bx) dx</a>, Math. Comp., 19 (1965), 113-117.

%F a(n) = numerator((n/2^(n-1)) * sum((-1)^r*(n-2*r)^(n-1)/(r!*(n-r)!), r=0..n/2)). - _Sean A. Irvine_, Oct 01 2013

%e 1, 1, 3/4, 2/3, 115/192, 11/20, ...

%t a[n_] := Numerator[ (2/Pi)*Integrate[ (Sin[x]/x)^n, {x, 0, Infinity}] ]; Table[ a[n], {n, 1, 21}] (* _Jean-Fran├žois Alcover_, Dec 19 2011 *)

%t Numerator@Table[Sum[(-1)^k (n-2k)^(n-1) Binomial[n, k], {k, 0, n/2}]/((n-1)! 2^(n-1)), {n, 1, 30}] (* _Vladimir Reshetnikov_, Sep 02 2016 *)

%o (PARI) a(n) = numerator((n/2^(n-1)) * sum(r=0, n/2, (-1)^r*(n-2*r)^(n-1)/(r!*(n-r)!))); \\ _Michel Marcus_, Oct 02 2013

%Y Cf. A002298 (for denominators), A002304, A002305. Essentially the same as A049330, except for the n=4 term.

%K nonn,frac,easy,nice

%O 1,3

%A _N. J. A. Sloane_

%E a(22)-a(23) from _T. D. Noe_, Feb 22 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 06:34 EST 2019. Contains 329784 sequences. (Running on oeis4.)