|
|
A002282
|
|
a(n) = 8*(10^n - 1)/9.
|
|
37
|
|
|
0, 8, 88, 888, 8888, 88888, 888888, 8888888, 88888888, 888888888, 8888888888, 88888888888, 888888888888, 8888888888888, 88888888888888, 888888888888888, 8888888888888888, 88888888888888888, 888888888888888888, 8888888888888888888
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
If the initial term is omitted, might be called eightful (or hateful) numbers!
|
|
LINKS
|
Harry J. Smith, Table of n, a(n) for n = 0..200
Index entries for linear recurrences with constant coefficients, signature (11, -10).
|
|
FORMULA
|
a(n) = 10*a(n-1) + 8, with a(0)=0. - Paolo P. Lava, Jan 23 2009
a(n) = 11a(n-1) - 10a(n-2), with a(0)=0, a(1)=8. G.f.: 8x/((1-x)(1-10x)). - Jaume Oliver Lafont, Feb 03 2009
a(n) = A178635(n) / A002283(n). - Reinhard Zumkeller, May 31 2010
a(n) = a(n-1) + 8*10^(n-1), with a(0)=0. - Vincenzo Librandi, Jul 22 2010
a(n) = 8*A002275(n) = A002283(n) - A002275(n). - Carauleanu Marc, Sep 03 2016
From Ilya Gutkovskiy, Sep 03 2016: (Start)
E.g.f.: 8*(exp(9*x) - 1)*exp(x)/9.
a(n) = floor(8*10^n/9). (End)
|
|
EXAMPLE
|
Curious multiplications:
9*9 + 7 = 88;
98*9 + 6 = 888;
987*9 + 5 = 8888;
9876*9 + 4 = 88888;
98765*9 + 3 = 888888;
987654*9 + 2 = 8888888;
9876543*9 + 1 = 88888888;
98765432*9 + 0 = 888888888;
987654321*9 - 1 = 8888888888;
9876543210*9 - 2 = 88888888888. - Philippe Deléham, Mar 09 2014
|
|
MAPLE
|
A002282:=n->8*(10^n - 1)/9; seq(A002282(n), n=0..20); # Wesley Ivan Hurt, Mar 10 2014
|
|
MATHEMATICA
|
LinearRecurrence[{11, -10}, {0, 8}, 20] (* Harvey P. Dale, May 30 2013 *)
|
|
PROG
|
(PARI) { a=-4/5; for (n = 0, 200, a+=8*10^(n - 1); write("b002282.txt", n, " ", a); ) } \\ Harry J. Smith, Jun 27 2009
|
|
CROSSREFS
|
Cf. A051003, A059482.
Cf. A002275, A002276, A002277, A002278, A002279, A002280, A002281, A059988, A075412.
Sequence in context: A053378 A062185 A053379 * A112907 A053380 A250166
Adjacent sequences: A002279 A002280 A002281 * A002283 A002284 A002285
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|