%I #83 Feb 08 2024 01:34:27
%S 0,3,33,333,3333,33333,333333,3333333,33333333,333333333,3333333333,
%T 33333333333,333333333333,3333333333333,33333333333333,
%U 333333333333333,3333333333333333,33333333333333333,333333333333333333,3333333333333333333,33333333333333333333,333333333333333333333
%N a(n) = 3*(10^n - 1)/9.
%C From _Wolfdieter Lang_, Feb 08 2017: (Start)
%C This sequence (for n >= 1) appears in n-families satisfying so-called curious cubic identities based on the Armstrong numbers 153, 370 and 371, A005188(10) - A005188(12).
%C 153 also involves A246057(n-1) and A093143(n). See a comment in A246057 with the van Poorten et al. reference, and A281857.
%C 370 and 371 also involve A067275(n+1). See the comment there, and A281858 and A281860. (End)
%H Ivan Panchenko, <a href="/A002277/b002277.txt">Table of n, a(n) for n = 0..200</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repdigit.html">Repdigit</a>.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,-10).
%F a(n) = 3*A002275(n).
%F a(n) = A178631(n)/A002283(n). - _Reinhard Zumkeller_, May 31 2010
%F From _Vincenzo Librandi_, Jul 22 2010: (Start)
%F a(n) = a(n-1) + 3*10^(n-1) with a(0)=0;
%F a(n) = 11*a(n-1) - 10*a(n-2) with a(0)=0, a(1)=3. (End)
%F G.f.: 3*x/((1 - x)*(1 - 10*x)). - _Ilya Gutkovskiy_, Feb 24 2017
%F Sum_{n>=1} 1/a(n) = A135702. - _Amiram Eldar_, Nov 13 2020
%F E.g.f.: exp(x)*(exp(9*x) - 1)/3. - _Stefano Spezia_, Sep 13 2023
%e From _Wolfdieter Lang_, Feb 08 2017: (Start)
%e Curious cubic identities (see a comment above):
%e 1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ...
%e 3^3 + 7^3 + 0^3 = 370; 336700 = 33^3 + 67^3 + (00)^3 = 336700, 333^3 + 667^3 + (000)^3 = 333667000, ...
%e 3^3 + 7^3 + 1^3 = 371, 33^3 + 67^3 + (01)^3 = 336701, 333^3 + 667^3 + (001)^3 = 333667001, ... (End)
%p A002277:=n->(10^n-1)/3: seq(A002277(n), n=0..30); # _Wesley Ivan Hurt_, Apr 01 2016
%t LinearRecurrence[{11, -10}, {0, 3}, 20] (* _Robert G. Wilson v_, Jul 06 2013 *)
%t (10^Range[0, 30] - 1)/3 (* _Wesley Ivan Hurt_, Apr 01 2016 *)
%o (Maxima) A002277(n):=(10^n - 1)/3$
%o makelist(A002277(n),n,0,20); /* _Martin Ettl_, Nov 12 2012 */
%o (PARI) a(n)=(10^n-1)/3 \\ _Charles R Greathouse IV_, Sep 24 2015
%o (Magma) [(10^n - 1)/3 : n in [0..30]]; // _Wesley Ivan Hurt_, Apr 01 2016
%Y Cf. A002275, A002276, A002278, A002279, A002280, A002281, A002282, A002283.
%Y Cf. A005188, A067275, A075412, A093143, A135702, A178631, A178633, A246057, A281857, A281858, A281860.
%K easy,nonn
%O 0,2
%A _N. J. A. Sloane_