The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002190 Sum_{n>=0} a(n)*x^n/n!^2 = -log(BesselJ(0,2*sqrt(x))).
(Formerly M3651 N1484)

%I M3651 N1484

%S 0,1,1,4,33,456,9460,274800,10643745,530052880,32995478376,

%T 2510382661920,229195817258100,24730000147369440,3113066087894608560,

%U 452168671458789789504,75059305956331837485345,14121026957032156557396000,2988687741694684876495689040

%N Sum_{n>=0} a(n)*x^n/n!^2 = -log(BesselJ(0,2*sqrt(x))).

%C Number of non-ambiguous trees, see the Aval et al. reference. - _Joerg Arndt_, May 11 2015

%D Stany De Smedt, On Sloane's Sequence 1484, Saitama Math. J. 15 (1997), 9-13.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A002190/b002190.txt">Table of n, a(n) for n = 0..100</a>

%H J.-C. Aval, A. Boussicault, M. Bouvel and M. Silimbani, <a href="http://www.labri.fr/perso/boussica/archives/publications/combinatorics_of_non_ambiguous_trees.pdf">Combinatorics of non-ambiguous trees</a>, 2012. - From _N. J. A. Sloane_, Jan 03 2013

%H Jean-Christophe Aval, Adrien Boussicault, Mathilde Bouvel, Matteo, <a href="http://arxiv.org/abs/1305.3716">Combinatorics of non-ambiguous trees</a>, arXiv:1305.3716 [math.CO], (16-May-2013).

%H Juan Arias de Reyna, Richard P. Brent and Jan van de Lune, <a href="http://arxiv.org/abs/1205.4423">On the sign of the real part of the Riemann zeta-function</a>, arXiv preprint arXiv:1205.4423 [math.NT], 2012.

%H Beáta Bényi, Gábor V. Nagy, <a href="https://arxiv.org/abs/1707.06899">Bijective enumerations of Γ-free 0-1 matrices</a>, arXiv:1707.06899 [math.CO], (2017).

%H L. Carlitz, <a href="http://dx.doi.org/10.1090/S0002-9939-1963-0166147-X">A sequence of integers related to the Bessel functions</a>, Proc. Amer. Math. Soc., 14 (1963), 1-9.

%H William Dugan, Sam Glennon, Paul E. Gunnells, Einar Steingrimsson, <a href="https://arxiv.org/abs/1702.02446">Tiered trees, weights, and q-Eulerian numbers</a>, arXiv:1702.02446 [math.CO], 2017.

%H Mark Dukes, Thomas Selig, Jason P. Smith, Einar Steingrimsson, <a href="https://arxiv.org/abs/1810.02437">Permutation graphs and the Abelian sandpile model, tiered trees and non-ambiguous binary trees</a>, arXiv:1810.02437 [math.CO], 2018.

%H Philippe Flajolet, Éric Fusy, Xavier Gourdon, Daniel Panario and Nicolas Pouyanne, <a href="http://arxiv.org/abs/math.CO/0606370">A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics</a>, arXiv:math/0606370 [math.CO], 2006.

%H Christian Günther, Kai-Uwe Schmidt, <a href="http://arxiv.org/abs/1602.01750">Lq norms of Fekete and related polynomials</a>, arXiv:1602.01750 [math.NT], 2016.

%H <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a>

%F Conjecture: G.f.: 1 = Sum_{n>=0} a(n+1)*A000108(n)*x^n*Sum_{k>=0} C(2*n+k,k)^2*(-x)^k. Compare with the following g.f of the Catalan numbers (A000108): 1 = Sum_{n>=0} A000108(n)*x^n*Sum_{k>=0} C(2*n+k,k)*(-x)^k. - _Paul D. Hanna_, Oct 10 2010

%F a(n) ~ n! * (n-1)! / r^n, where r = 1/4*BesselJZero[0,1]^2 = 1.44579649073669613... - _Vaclav Kotesovec_, Mar 02 2014

%e -log( Sum_{n>=0} (-x)^n/n!^2 ) = x + x^2/2!^2 + 4*x^3/3!^2 + 33*x^4/4!^2 + 456*x^5/5!^2 + 9460*x^6/6!^2 + ... . -_Paul D. Hanna_, Oct 09 2010

%p a:= n-> coeff(series(-ln(BesselJ(0,2*sqrt(x))), x, n+1), x, n)*(n!)^2:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Oct 10 2010

%t nn=18; CoefficientList[Series[-Log[BesselJ[0, 2*Sqrt[x]]], {x, 0, nn}], x]*Table[n!^2, {n, 0, nn}] (* _Jean-François Alcover_, Jun 22 2011 *)

%t Clear[q]; q[n_, 1] := (n-1)!^2; q[n_, k_] := q[n, k] = Sum[Binomial[n-1, j]*Binomial[n-1, j+1]*Sum[q[j+1, r]*q[n-j-1, k-r], {r, Max[1, -n+j+k+1], Min[j+1, k-1]}], { n-2}]; a[n_] := q[n, n]; Table[a[n], {n, 0, 18}] (* _Jean-François Alcover_, Feb 13 2013 *)

%o (PARI)

%o N=66; x='x+O('x^N);

%o f=-log(sum(n=0,N, (-x)^n/(n!)^2) );

%o f=serlaplace(f);

%o f=serlaplace(f);

%o concat([0],Vec(f))

%o \\ _Joerg Arndt_, May 17 2013

%o (PARI) \\ Terms starting from a(1)=1:

%o N=33; B=vector(N); B[1]=1; b(j)=B[j+1];

%o for(n=0,N-2, B[n+2]=sum(i=0,n, my(j=n-i); binomial(n+1,i)*binomial(n+1,j)*b(i)*b(j) ) ); B

%o \\ _Joerg Arndt_, May 11 2015

%Y Cf. A101981. A diagonal of A217940.

%Y Cf. A115368.

%K nonn,nice

%O 0,4

%A _N. J. A. Sloane_

%E More terms and better definition from _Vladeta Jovovic_, Jul 16 2006

%E Edited by Assoc. Editors of the OEIS, Oct 12 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 12:11 EDT 2021. Contains 342949 sequences. (Running on oeis4.)