login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002155 Numbers n for which rank of the elliptic curve y^2=x^3+n is 2.
(Formerly M4957 N2125)
12

%I M4957 N2125

%S 15,17,24,37,43,57,63,65,73,79,89,101,106,122,129,131,142,145,148,151,

%T 161,164,168,171,186,195,197,198,204,217,222,223,225,229,232,233,248,

%U 252,260,265,268,269,281,294,295,297,303,322,331,337,347,350,353,360,366,369,373,377,381,388,389,392,404,409,412,414,433,449,464,469,481,483,485,492

%N Numbers n for which rank of the elliptic curve y^2=x^3+n is 2.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A002155/b002155.txt">Table of n, a(n) for n=1..1724</a> (using Gebel)

%H B. J. Birch and H. P. F. Swinnerton-Dyer, <a href="http://dx.doi.org/10.1515/crll.1963.212.7">Notes on elliptic curves, I</a>, J. Reine Angew. Math., 212 (1963), 7-25.

%H J. Gebel, <a href="/A001014/a001014.txt">Integer points on Mordell curves</a> [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]

%H L. Lehman, <a href="http://people.umw.edu/~llehman/ranktwo.htm">Elliptic Curves of Rank Two</a> [broken link]

%H H. Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/ec/eca1/ec01rp.txt">Tables of Elliptic Curves</a>

%Y Cf. A060950, A002151, A002153, A102833, A060748, A060838, A060951-A060953.

%K nonn

%O 1,1

%A _N. J. A. Sloane_.

%E More terms from _James R. Buddenhagen_, Feb 18 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 01:06 EDT 2019. Contains 321406 sequences. (Running on oeis4.)