This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002155 Numbers n for which rank of the elliptic curve y^2=x^3+n is 2. (Formerly M4957 N2125) 12
 15, 17, 24, 37, 43, 57, 63, 65, 73, 79, 89, 101, 106, 122, 129, 131, 142, 145, 148, 151, 161, 164, 168, 171, 186, 195, 197, 198, 204, 217, 222, 223, 225, 229, 232, 233, 248, 252, 260, 265, 268, 269, 281, 294, 295, 297, 303, 322, 331, 337, 347, 350, 353, 360, 366, 369, 373, 377, 381, 388, 389, 392, 404, 409, 412, 414, 433, 449, 464, 469, 481, 483, 485, 492 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=1..1724 (using Gebel) B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves, I, J. Reine Angew. Math., 212 (1963), 7-25. J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017] L. Lehman, Elliptic Curves of Rank Two [broken link] H. Mishima, Tables of Elliptic Curves PROG (MAGMA) for k in[1..500] do if Rank(EllipticCurve([0, 0, 0, 0, k])) eq 2 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019 CROSSREFS Cf. A060950, A002151, A002153, A102833, A060748, A060838, A060951-A060953. Sequence in context: A183981 A155111 A124334 * A290749 A091017 A157716 Adjacent sequences:  A002152 A002153 A002154 * A002156 A002157 A002158 KEYWORD nonn AUTHOR EXTENSIONS More terms from James R. Buddenhagen, Feb 18 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 03:04 EDT 2019. Contains 328315 sequences. (Running on oeis4.)