login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002139 Shuffling 2n cards.
(Formerly M0737 N0276)
1
2, 3, 5, 12, 14, 11, 13, 20, 72, 19, 42, 132, 84, 114, 29, 30, 110, 156, 37, 156, 420, 210, 156, 552, 462, 72, 53, 420, 342, 59, 61, 42, 156, 67, 506, 1260, 90, 420, 930, 1560, 990, 83, 72, 812, 132, 156, 110, 1332, 2352, 930, 101, 2652, 156 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..5000

S. W. Golomb, Permutations by cutting and shuffling, SIAM Rev., 3 (1961), 293-297.

FORMULA

a(n) = (f(n)+1) * phi(p^(k-1)) if 2 is primitive mod 2n-1 in which case necessarily 2n-1=p^k, p prime; otherwise, a(n) = lcm(f(n), f(n)+1), where f(n) = A002326(n-1). - Sean A. Irvine, Jul 17 2013

MATHEMATICA

f[n_] := MultiplicativeOrder[2, 2*n-1]; a[n_] := If[f[n] == EulerPhi[2*n-1], {p, k} = FactorInteger[2*n-1] // First; (f[n]+1)*EulerPhi[p^(k-1)], LCM[f[n], f[n]+1]]; Table[a[n], {n, 1, 100}] (* Jean-Fran├žois Alcover, Mar 06 2014, after Sean A. Irvine *)

CROSSREFS

Cf. A002326.

Sequence in context: A158936 A271227 A293696 * A140489 A193776 A051915

Adjacent sequences:  A002136 A002137 A002138 * A002140 A002141 A002142

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Sean A. Irvine, Jul 17 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 24 05:37 EST 2018. Contains 299597 sequences. (Running on oeis4.)