The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002100 a(n) = number of partitions of n into semiprimes (more precisely, number of ways of writing n as a sum of products of 2 distinct primes). (Formerly M0205 N0076) 5
 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 2, 2, 0, 2, 1, 3, 2, 3, 1, 4, 2, 4, 3, 5, 4, 7, 3, 6, 5, 8, 6, 10, 6, 10, 9, 12, 9, 15, 11, 16, 14, 18, 14, 22, 19, 25, 22, 27, 23, 33, 29, 36, 33, 40, 38, 49, 43, 53, 51, 61, 57, 71, 64, 77, 76, 89, 86, 102, 96, 113, 111, 128, 125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,20 REFERENCES L. M. Chawla and S. A. Shad, On a restricted partition function t(n) and its table, J. Natural Sciences and Mathematics, 9 (1969), 217-221. Math. Rev. 41 #6761. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 EXAMPLE a(20) = 2: 20 = 2*3 + 2*7 = 2*5 + 2*5. PROG (PARI) a(n)=polcoeff(1/prod(k=1, n, if(issquarefree(k)*if(omega(k)-2, 0, 1), 1-z^k, 1))+O(z^(n+1)), n) (Haskell) a002100 = p a006881_list where    p _          0 = 1    p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Mar 21 2014 CROSSREFS Cf. A006881, A073576, A101048. Sequence in context: A112792 A138319 A217864 * A108352 A215883 A277024 Adjacent sequences:  A002097 A002098 A002099 * A002101 A002102 A002103 KEYWORD nonn AUTHOR EXTENSIONS More terms from Benoit Cloitre, Jun 01 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 07:28 EST 2020. Contains 332159 sequences. (Running on oeis4.)