login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002093 Highly abundant numbers: numbers k such that sigma(k) > sigma(m) for all m < k.
(Formerly M0553 N0200)
76

%I M0553 N0200 #86 May 14 2022 11:58:15

%S 1,2,3,4,6,8,10,12,16,18,20,24,30,36,42,48,60,72,84,90,96,108,120,144,

%T 168,180,210,216,240,288,300,336,360,420,480,504,540,600,630,660,720,

%U 840,960,1008,1080,1200,1260,1440,1560,1620,1680,1800,1920,1980,2100

%N Highly abundant numbers: numbers k such that sigma(k) > sigma(m) for all m < k.

%C Where record values of sigma(n) occur.

%C Also record values of A070172: A070172(i) < a(n) for 1 <= i < A085443(n), a(n) = A070172(A085443(n)). - _Reinhard Zumkeller_, Jun 30 2003

%C Numbers k such that sum of the even divisors of 2*k is a record. - _Arkadiusz Wesolowski_, Jul 12 2012

%C Conjecture: (a) Every highly abundant number > 10 is practical (A005153). (b) For every integer k there exists A such that k divides a(n) for all n > A. Daniel Fischer proved that every highly abundant number greater than 3, 20, 630 is divisible by 2, 6, 12 respectively. The first conjecture has been verified for the first 10000 terms. - _Jaycob Coleman_, Oct 16 2013

%C Conjecture: For each term k: (1) Let p be the largest prime less than k (if one exists) and let q be the smallest prime greater than k; then k-p is either 1 or a prime, and q-k is either 1 or a prime. (2) The closest prime number p < k located to a distance d = k-p > 1 is also always at a prime distance. These would mean that the even highly abundant numbers greater than 2 always have at least a Goldbach pair of primes. h=p+d. Both observations verified for the first 10000 terms. - _David Morales Marciel_, Jan 04 2016

%C Pillai used the term "highly abundant numbers of the r-th order" for numbers with record values of the sum of the reciprocals of the r-th powers of their divisors. Thus highly abundant numbers of the 1st order are actually the superabundant numbers (A004394). - _Amiram Eldar_, Jun 30 2019

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A002093/b002093.txt">Table of n, a(n) for n = 1..10000</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H L. Alaoglu and P. Erdős, <a href="http://www.renyi.hu/~p_erdos/1944-03.pdf">On highly composite and similar numbers,</a> Trans. Amer. Math. Soc., 56 (1944), 448-469. <a href="http://upforthecount.com/math/errata.html">Errata</a>.

%H D. Fischer, <a href="http://math.stackexchange.com/a/469199/76533">Proof 2, 6, 12 divides a(n) greater than 3, 20, 630 resp.</a>

%H S. S. Pillai, <a href="https://archive.org/details/in.ernet.dli.2015.282686/page/n825">On numbers analogous to highly composite numbers of Ramanujan</a>, Rajah Sir Annamalai Chettiar Commemoration Volume, ed. Dr. B. V. Narayanaswamy Naidu, Annamalai University, 1941, pp. 697-704.

%H S. S. Pillai, <a href="https://web.archive.org/web/20150912090449/http://www.calmathsoc.org/bulletin/article.php?ID=B.1943.35.20">Highly abundant numbers</a>, Bulletin of the Calcutta Mathematical Society, Vol. 35, No. 1 (1943), pp. 141-156.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> (The RECORDS transform returns both the high-water marks and the places where they occur).

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Highly_abundant_number">Highly abundant number</a>

%p N:= 100: # to get a(1) to a(N)

%p best:= 0: count:= 0:

%p for n from 1 while count < N do

%p s:= numtheory:-sigma(n);

%p if s > best then

%p best:= s;

%p count:= count+1;

%p A[count]:= n;

%p fi

%p od:

%p seq(A[i],i=1..N);# _Robert Israel_, Jan 20 2016

%t a={}; k=0; Do[s=DivisorSigma[1,n]; If[s>k, AppendTo[a,n]; k=s], {n,3000}]; a (* _Vladimir Joseph Stephan Orlovsky_, Jul 25 2008 *)

%t DeleteDuplicates[Table[{n,DivisorSigma[1,n]},{n,100}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]] (* _Harvey P. Dale_, May 14 2022 *)

%o (PARI) for(n=1,1000,if(sum(i=1,n-1,sign(sigma(n)-sigma(i))) == n-1,print1(n,",")))

%Y Cf. A034091, A000203, A004394, A005153.

%Y The record values are in A034885.

%Y Cf. A193988, A193989 (records for sigma_2 and sigma_3).

%K nonn,nice

%O 1,2

%A _N. J. A. Sloane_

%E Better description from _N. J. A. Sloane_, Apr 15 1997

%E More terms from _Jud McCranie_, Jul 04 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 22:17 EDT 2024. Contains 371964 sequences. (Running on oeis4.)