

A002078


Nequivalence classes of threshold functions of n or fewer variables.
(Formerly M0816 N0308)


3




OFFSET

0,1


COMMENTS

It appears that this is the BinomialMean transform of A000609. (See A075271 for the definition of the transform.)  John W. Layman, Feb 21 2003


REFERENCES

S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2.  Row 7.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=0..8.
S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
Muroga, Saburo, Iwao Toda, and Satoru Takasu, Theory of majority decision elements, Journal of the Franklin Institute 271.5 (1961): 376418. [Annotated scans of pages 413 and 414 only]
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818825.
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818825. [Annotated scanned copy]
Michael Z. Spivey and Laura L. Steil, The kBinomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
Eda UyanÄ±k, Olivier Sobrie, Vincent Mousseau, Marc Pirlot, Enumerating and categorizing positive Boolean functions separable by a kadditive capacity, Discrete Applied Mathematics, Vol. 229, 1 October 2017, p. 1730. See Table 4.


CROSSREFS

Cf. A000609, A075271.
Sequence in context: A176806 A168268 A277876 * A000372 A123930 A238895
Adjacent sequences: A002075 A002076 A002077 * A002079 A002080 A002081


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane.


STATUS

approved



