login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002037 Product of all primes up to 3^n.
(Formerly M4303 N1799)
6
1, 6, 210, 223092870, 3217644767340672907899084554130, 256041159035492609053110100510385311995538591998443060216114576417920917800321526504084465112487730 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This is the sequence denoted by P_i in van Lint's solution to problem 5412 posed by P. Erdős (Amer. Math. Monthly, 74 (1967) p. 874), used to compute the sequence A002038 related to the same problem. The next term, A002037(6), has 301 digits. - M. F. Hasler, Jan 02 2013

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..5.

H. P. Robinson and N. J. A. Sloane, Correspondence, 1971-1972

J. H. van Lint, Solution to problem 5412, Amer. Math. Monthly 74 no.7 (1967), pp. 874-875.

J. H. van Lint, Scan of solution to problem 5412, Amer. Math. Monthly 74 (1967) 874.

PROG

(PARI) A002037(i)=prod(j=1, primepi(3^i), prime(j)) \\ M. F. Hasler, Jan 02 2013

(PARI) {print1(P=L=1); for(i=1, 6, forprime(p=L+1, L*=3, P*=p); print1(", "P))} \\ M. F. Hasler, Jan 02 2013

CROSSREFS

Sequence in context: A126676 A073100 A093536 * A332989 A030265 A275567

Adjacent sequences:  A002034 A002035 A002036 * A002038 A002039 A002040

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Better definition and one more term from M. F. Hasler, Jan 02 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 07:05 EDT 2020. Contains 333073 sequences. (Running on oeis4.)