login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001949 Solutions of a fifth-order probability difference equation.
(Formerly M1127 N0430)
11
0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 63, 124, 244, 480, 944, 1856, 3649, 7174, 14104, 27728, 54512, 107168, 210687, 414200, 814296, 1600864, 3147216, 6187264, 12163841, 23913482, 47012668, 92424472, 181701728, 357216192, 702268543, 1380623604, 2714234540 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

This sequence is the case r = 5 in the solution to an r-th order probability difference equation that can be found in Eqs. (4) and (3) on p. 356 of Dunkel (1925). (Equation (3) follows equation (4) in the paper!) For r = 2, we get a shifted version of A000071. For r = 3, we get a shifted version of A008937. For r = 4, we get a shifted version of A107066. For r = 6, we get a shifted version of A172316. See also the table in A172119. - Petros Hadjicostas, Jun 15 2019

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

O. Dunkel, Solutions of a probability difference equation, Amer. Math. Monthly, 32 (1925), 354-370; see pp. 356 and 369.

T. Langley, J. Liese, and J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order , J. Int. Seq. 14 (2011), Article #11.4.2.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Index entries for linear recurrences with constant coefficients, signature (2,0,0,0,0,-1)

FORMULA

For n >= 6, a(n+1) = 2*a(n) - a(n-5).

G.f.: x^5 / ( (x-1)*(x^5 + x^4 + x^3 + x^2 + x - 1) ).

a(n) = Sum_{k=1..n-4} Sum_{j=0..floor((n-k-4)/5)} (-1)^j*binomial(n-5*j-5, k-1)*binomial(n-k-5*j-4, j). - Vladimir Kruchinin, Oct 19 2011

4*a(n) = A000322(n+1) - 1. - R. J. Mathar, Aug 16 2017

From Petros Hadjicostas, Jun 15 2019: (Start)

a(n) = 1 + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) for n >= 5. (See Eq. (4) and the Theorem with r = 5 on p. 356 of Dunkel (1925).)

a(n) = T(n - 5, 5) for n >= 5, where T(n, k) = Sum_{j = 0..floor(n/(k+1))} (-1)^j * binomial(n - k*j, n - (k+1)*j) * 2^(n - (k+1)*j) for 0 <= k <= n. This is Richard Choulet's formula in A172119.

(End)

MAPLE

A001949:=1/(z-1)/(z**5+z**4+z**3+z**2+z-1); # Simon Plouffe in his 1992 dissertation

MATHEMATICA

t={0, 0, 0, 0, 0}; Do[AppendTo[t, t[[-5]]+t[[-4]]+t[[-3]]+t[[-2]]+t[[-1]]+1], {n, 40}]; t (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)

LinearRecurrence[{2, 0, 0, 0, 0, -1}, {0, 0, 0, 0, 0, 1}, 40] (* Harvey P. Dale, Jan 17 2015 *)

PROG

(Maxima)

a(n):=sum(sum((-1)^j*binomial(n-5*j-5, k-1)*binomial(n-k-5*j-4, j), j, 0, (n-k-4)/5), k, 1, n-4); /* Vladimir Kruchinin, Oct 19 2011 */

(PARI) x='x+O('x^99); concat(vector(5), Vec(x^5/((x-1)*(x^5+x^4+x^3+x^2+x-1)))) \\ Altug Alkan, Oct 04 2017

CROSSREFS

Column k = 1 of A141020 (with a different offset) and second main diagonal of A141021 (with no zeros).

Column k = 5 of A172119.

Sequence in context: A290987 A145112 A062259 * A210031 A239558 A239559

Adjacent sequences:  A001946 A001947 A001948 * A001950 A001951 A001952

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Name edited by Petros Hadjicostas, Jun 15 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 00:32 EDT 2019. Contains 327991 sequences. (Running on oeis4.)