This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001947 a(n) = Lucas(5*n+2). (Formerly M3120 N1265) 1
 3, 29, 322, 3571, 39603, 439204, 4870847, 54018521, 599074578, 6643838879, 73681302247, 817138163596, 9062201101803, 100501350283429, 1114577054219522, 12360848946698171, 137083915467899403, 1520283919093591604, 16860207025497407047, 186982561199565069121 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Related to Bernoulli numbers. REFERENCES J. Riordan, Combinatorial Identities, Wiley, 1968, p. 141. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..200 Tanya Khovanova, Recursive Sequences Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. Index entries for linear recurrences with constant coefficients, signature (11, 1). FORMULA G.f.: (3 - 4*x) / (1 - 11*x - x^2). - Corrected by Colin Barker, Apr 22 2017 a(n) = Lucas(5*n+2). - Thomas Baruchel, Nov 26 2003 From Colin Barker, Apr 22 2017: (Start) a(n) = (((11-5*sqrt(5))/2)^n*(-5+3*sqrt(5)) + (5+3*sqrt(5))*((11+5*sqrt(5))/2)^n) / (2*sqrt(5)). a(n) = 11*a(n-1) + a(n-2) for n>1. (End) MAPLE A001947:=(-3+4*z)/(-1+11*z+z**2); # Conjectured by Simon Plouffe in his 1992 dissertation. MATHEMATICA LucasL[5*Range[0, 20]+2] (* Harvey P. Dale, Jan 18 2012 *) PROG (MAGMA) [ Lucas(5*n +2): n in [0..120]]; // Vincenzo Librandi, Apr 16 2011 (PARI) Vec((3 - 4*x) / (1 - 11*x - x^2) + O(x^20)) \\ Colin Barker, Apr 22 2017 CROSSREFS Sequence in context: A155651 A268020 A278934 * A323569 A049038 A091646 Adjacent sequences:  A001944 A001945 A001946 * A001948 A001949 A001950 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 18:52 EDT 2019. Contains 327245 sequences. (Running on oeis4.)