login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001939 Expansion of (psi(-x) / phi(-x))^5 in powers of x where phi(), psi() are Ramanujan theta functions.
(Formerly M3898 N1599)
8
1, 5, 20, 65, 185, 481, 1165, 2665, 5820, 12220, 24802, 48880, 93865, 176125, 323685, 583798, 1035060, 1806600, 3108085, 5276305, 8846884, 14663645, 24044285, 39029560, 62755345, 100004806, 158022900, 247710570, 385366265, 595212280, 913040649, 1391449780 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)

A. Cayley, A memoir on the transformation of elliptic functions, Philosophical Transactions of the Royal Society of London (1874): 397-456; Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, included in Vol. 9. [Annotated scan of pages 126-129]

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q^(-5/8) * (eta(q^4) / eta(q))^5 in powers of q. - Michael Somos, Sep 24 2011

Euler transform of period 4 sequence [ 5, 5, 5, 0, ...]. - Michael Somos, Sep 24 2011

G.f.: (Product_{k>0} (1 - x^(4*k)) / (1 - x^k))^5. - Michael Somos, Sep 24 2011

a(n) = (-1)^n * A195861(n). - Michael Somos, Sep 24 2011

a(n) ~ 5^(1/4) * exp(sqrt(5*n/2)*Pi) / (64 * 2^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 27 2015

EXAMPLE

1 + 5*x + 20*x^2 + 65*x^3 + 185*x^4 + 481*x^5 + 1165*x^6 + 2665*x^7 + ...

q^5 + 5*q^13 + 20*q^21 + 65*q^29 + 185*q^37 + 481*q^45 + 1165*q^53 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q] / EllipticTheta[ 2, Pi/4, q^(1/2)] / (16 q)^(1/8))^5, {q, 0, n}] (* Michael Somos, Sep 24 2011 *)

a[ n_] := SeriesCoefficient[ (Product[1 - x^k, {k, 4, n, 4}] / Product[1 - x^k, {k, n}])^5, {x, 0, n}] (* Michael Somos, Sep 24 2011 *)

nn = 4*20; b = Flatten[Table[{5, 5, 5, 0}, {nn/4}]]; CoefficientList[x*Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Aug 17 2012 *)

QP = QPochhammer; s = (QP[q^4]/QP[q])^5 + O[q]^40; CoefficientList[s, q] (* Jean-Fran├žois Alcover, Nov 27 2015, adapted from PARI *)

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) / eta(x + A))^5, n))} /* Michael Somos, Sep 24 2011 */

CROSSREFS

Cf. A000122, A000700, A010054, A121373, A195861.

Sequence in context: A270734 A271411 A195861 * A100534 A285928 A160506

Adjacent sequences:  A001936 A001937 A001938 * A001940 A001941 A001942

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Simon Plouffe

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 17:07 EST 2019. Contains 319350 sequences. (Running on oeis4.)