This site is supported by donations to The OEIS Foundation.



The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001912 Numbers n such that 4*n^2 + 1 is prime.
(Formerly M0636 N0232)

%I M0636 N0232

%S 1,2,3,5,7,8,10,12,13,18,20,27,28,33,37,42,45,47,55,58,60,62,63,65,67,

%T 73,75,78,80,85,88,90,92,102,103,105,112,115,118,120,125,128,130,132,

%U 135,140,142,150,153,157,163,170,175,192,193,198,200

%N Numbers n such that 4*n^2 + 1 is prime.

%C Complement of A094550. - _Hermann Stamm-Wilbrandt_, Sep 16 2014.

%C Positive integers whose square is the sum of two triangular numbers in exactly one way (A000217(n) + A000217(n+1) = n*(n+1)/2 + (n+1)*(n+2)/2 = (n+1)^2). In other words, positive integers n such that A052343(n^2) = 1. - _Altug Alkan_, Jul 06 2016

%D E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971, p. 1.

%D M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 11.

%D C. S. Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 116.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A001912/b001912.txt">Table of n, a(n) for n = 1..10000</a>

%H A. J. C. Cunningham, <a href="/A001912/a001912.pdf">Binomial Factorisations</a>, Vols. 1-9, Hodgson, London, 1923-1929. [Annotated scans of a few pages from Volumes 1 and 2]

%H E. Kogbetliantz and A. Krikorian <a href="/A002970/a002970.pdf">Handbook of First Complex Prime Numbers</a>, Gordon and Breach, NY, 1971 [Annotated scans of a few pages]

%H Marek Wolf, <a href="http://arXiv.org/abs/0803.1456">Search for primes of the form m^2+1</a>, arXiv:0803.1456 [math.NT], 2008-2010.

%F a(n) = A005574(n+1)/2.

%p A001912 := proc(n)

%p option remember;

%p if n = 1 then

%p 1;

%p else

%p for a from procname(n-1)+1 do

%p if isprime(4*a^2+1) then

%p return a;

%p end if;

%p end do:

%p end if;

%p end proc: # _R. J. Mathar_, Aug 09 2012

%t Select[Range[200], PrimeQ[4#^2 + 1] &] (* _Alonso del Arte_, Dec 20 2013 *)

%o (MAGMA)[n: n in [1..100] | IsPrime(4*n^2+1)] // _Vincenzo Librandi_, Nov 21 2010

%o (PARI) is(n)=isprime(4*n^2 + 1) \\ _Charles R Greathouse IV_, Apr 28 2015

%Y Cf. A002496, A005574, A062325, A090693, A094550, A214517 (first differences).

%K nonn,easy,nice

%O 1,2

%A _N. J. A. Sloane_.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 22:27 EDT 2018. Contains 315360 sequences. (Running on oeis4.)