This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001898 Denominators of Bernoulli polynomials B(n)(x).
(Formerly M2014 N0749)

%I M2014 N0749

%S 1,2,12,8,240,96,4032,1152,34560,7680,101376,18432,50319360,7741440,

%T 6635520,884736,451215360,53084160,42361159680,4459069440,

%U 1471492915200,140142182400,1758147379200,152882380800,417368899584000,33389511966720,15410543984640

%N Denominators of Bernoulli polynomials B(n)(x).

%D F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]

%D N. E. Nørlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 459.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H N. E. Nörlund, <a href="/A001896/a001896_1.pdf">Vorlesungen über Differenzenrechnung</a>, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463]

%H <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a>

%F These Bernoulli polynomials B(s) = B(s)(x) are defined by: B(0) = 1; B(s) = (-x/s)*Sum_{t=1..s} (-1)^t*binomial(s, t)*Bernoulli(t)*B(s-t), where Bernoulli(t) are the usual Bernoulli numbers A027641/A027642. Also B(s)(1) = Bernoulli(s).

%e The Bernoulli polynomials B(0)(x) through B(6)(x) are:

%e 1;

%e -(1/2)*x;

%e (1/12)*(3*x-1)*x;

%e -(1/8)*(x-1)*x^2;

%e (1/240)*(15*x^3-30*x^2+5*x+2)*x;

%e -(1/96)*(x-1)*(3*x^2-7*x-2)*x^2;

%e (1/4032)*(63*x^5-315*x^4+315*x^3+91*x^2-42*x-16)*x.

%p B:=bernoulli; b:=proc(s) option remember; local t; global r; if s=0 then RETURN(1); fi; expand((-r/s)*add( (-1)^t*binomial(s,t)*B(t)*b(s-t),t=1..s)); end; [seq(denom(b(n)),n=0..30)];

%Y Cf. A027641, A027642, A100615, A100616, A100655.

%K nonn

%O 0,2

%A _N. J. A. Sloane_

%E Entry revised Dec 03 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 24 22:57 EST 2015. Contains 264374 sequences.