login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001898 Denominators of Bernoulli polynomials B(n)(x).
(Formerly M2014 N0749)
5

%I M2014 N0749

%S 1,2,12,8,240,96,4032,1152,34560,7680,101376,18432,50319360,7741440,

%T 6635520,884736,451215360,53084160,42361159680,4459069440,

%U 1471492915200,140142182400,1758147379200,152882380800,417368899584000,33389511966720,15410543984640

%N Denominators of Bernoulli polynomials B(n)(x).

%D F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]

%D N. E. N\"{o}rlund, Vorlesungen \"{u}ber Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 459.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a>

%F These Bernoulli polynomials B(s) = B(s)(x) are defined by: B(0) = 1; B(s) = (-x/s)*Sum( (-1)^t*binomial(s, t)*Bernoulli(t)*B(s-t), t=1..s)), where Bernoulli(t) are the usual Bernoulli numbers A027641/A027642. Also B(s)(1) = Bernoulli(s).

%e The Bernoulli polynomials B(0)(x) through B(6)(x) are:

%e 1

%e -(1/2)*x

%e (1/12)*(3*x-1)*x

%e -(1/8)*(x-1)*x^2

%e (1/240)*(15*x^3-30*x^2+5*x+2)*x

%e -(1/96)*(x-1)*(3*x^2-7*x-2)*x^2

%e (1/4032)*(63*x^5-315*x^4+315*x^3+91*x^2-42*x-16)*x

%p B:=bernoulli; b:=proc(s) option remember; local t; global r; if s=0 then RETURN(1); fi; expand((-r/s)*add( (-1)^t*binomial(s,t)*B(t)*b(s-t),t=1..s)); end; [seq(denom(b(n)),n=0..30)];

%Y Cf. A027641, A027642, A100615, A100616, A100655.

%K nonn

%O 0,2

%A _N. J. A. Sloane_.

%E Entry revised Dec 03, 2004.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 18 21:27 EST 2014. Contains 252174 sequences.