login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001898 Denominators of Bernoulli polynomials B(n)(x).
(Formerly M2014 N0749)
6

%I M2014 N0749

%S 1,2,12,8,240,96,4032,1152,34560,7680,101376,18432,50319360,7741440,

%T 6635520,884736,451215360,53084160,42361159680,4459069440,

%U 1471492915200,140142182400,1758147379200,152882380800,417368899584000,33389511966720,15410543984640

%N Denominators of Bernoulli polynomials B(n)(x).

%D F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]

%D N. E. Nørlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 459.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H N. E. Nörlund, <a href="/A001896/a001896_1.pdf">Vorlesungen über Differenzenrechnung</a>, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463]

%H <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a>

%F These Bernoulli polynomials B(s) = B(s)(x) are defined by: B(0) = 1; B(s) = (-x/s)*Sum_{t=1..s} (-1)^t*binomial(s, t)*Bernoulli(t)*B(s-t), where Bernoulli(t) are the usual Bernoulli numbers A027641/A027642. Also B(s)(1) = Bernoulli(s).

%e The Bernoulli polynomials B(0)(x) through B(6)(x) are:

%e 1;

%e -(1/2)*x;

%e (1/12)*(3*x-1)*x;

%e -(1/8)*(x-1)*x^2;

%e (1/240)*(15*x^3-30*x^2+5*x+2)*x;

%e -(1/96)*(x-1)*(3*x^2-7*x-2)*x^2;

%e (1/4032)*(63*x^5-315*x^4+315*x^3+91*x^2-42*x-16)*x.

%p B:=bernoulli; b:=proc(s) option remember; local t; global r; if s=0 then RETURN(1); fi; expand((-r/s)*add( (-1)^t*binomial(s,t)*B(t)*b(s-t),t=1..s)); end; [seq(denom(b(n)),n=0..30)];

%Y Cf. A027641, A027642, A100615, A100616, A100655.

%K nonn

%O 0,2

%A _N. J. A. Sloane_

%E Entry revised Dec 03 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 23:13 EST 2016. Contains 279021 sequences.