|
|
A001843
|
|
The coding-theoretic function A(n,4,4).
(Formerly M2644 N1052)
|
|
2
|
|
|
1, 1, 3, 7, 14, 18, 30, 35, 51, 65, 91, 105, 140, 157, 198, 228, 285, 315, 385, 419, 498, 550, 650, 702, 819, 877, 1005, 1085, 1240, 1320, 1496, 1583, 1773, 1887, 2109, 2223, 2470, 2593, 2856, 3010, 3311, 3465, 3795, 3959, 4308, 4508, 4900, 5100, 5525, 5737
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
4,3
|
|
COMMENTS
|
Maximal number of 4-subsets of an n-set such that any two subsets meet in at most 2 points.
|
|
REFERENCES
|
CRC Handbook of Combinatorial Designs, 1996, p. 411.
R. K. Guy, A problem of Zarankiewicz, in P. Erdős and G. Katona, editors, Theory of Graphs (Proceedings of the Colloquium, Tihany, Hungary), Academic Press, NY, 1968, pp. 119-150.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Table of n, a(n) for n=4..53.
Jingjun Bao and Lijun Ji, The completion determination of optimal (3,4)-packings, Des. Codes Cryptogr. 77, 217-229 (2015); arXiv:1401.2022 [math.CO], 2014.
A. E. Brouwer, Bounds for constant weight binary codes
A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, New table of constant weight codes, IEEE Trans. Info. Theory 36 (1990), 1334-1380.
R. K. Guy, A problem of Zarankiewicz, Research Paper No. 12, Dept. of Math., Univ. Calgary, Jan. 1967. [Annotated and scanned copy, with permission]
L. Ji, Asymptotic Determination of the Last Packing Number of Quadruples, Designs, Codes and Cryptography 38 (2006) 83-95.
Index entries for sequences related to A(n,d,w)
|
|
FORMULA
|
See Theorem 1.2 of Bao and Ji, 2015 (Theorem 4.9 in the arXiv preprint).
|
|
EXAMPLE
|
For n=7 use all seven cyclic shifts of 1110100.
|
|
PROG
|
(Python)
[((n-2)//2*(n-1)//3 - int(n%6 == 0)) * n // 4 for n in range(4, 50)]
# Andrey Zabolotskiy, Jan 28 2021
|
|
CROSSREFS
|
Sequence in context: A310268 A190700 A267448 * A310269 A033808 A310270
Adjacent sequences: A001840 A001841 A001842 * A001844 A001845 A001846
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Revised by N. J. A. Sloane and Andries E. Brouwer, May 08 2010
Terms a(23) and beyond added, entry edited by Andrey Zabolotskiy, Jan 28 2021
|
|
STATUS
|
approved
|
|
|
|