login
a(n) = n! * binomial(n,4).
(Formerly M5165 N2242)
4

%I M5165 N2242 #35 Sep 08 2022 08:44:29

%S 24,600,10800,176400,2822400,45722880,762048000,13172544000,

%T 237105792000,4452319872000,87265469491200,1784975512320000,

%U 38079477596160000,846536078868480000,19591263539527680000,471496409184632832000,11787410229615820800000

%N a(n) = n! * binomial(n,4).

%C Coefficients of Laguerre polynomials.

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A001806/b001806.txt">Table of n, a(n) for n = 4..100</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>

%F E.g.f.: x^4/(1-x)^5. - _Geoffrey Critzer_, Aug 19 2012

%p G(x):=x^4/(1-x)^5: f[0]:=G(x): for n from 1 to 18 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=4..18); # _Zerinvary Lajos_, Apr 01 2009

%t Table[n! Binomial[n, 4], {n, 4, 20}] (* _T. D. Noe_, Aug 10 2012 *)

%o (PARI) for(n=4,30, print1(n!*binomial(n,4), ", ")) \\ _G. C. Greubel_, May 17 2018

%o (Magma) [Factorial(n)*Binomial(n,4): n in [4..30]]; // _G. C. Greubel_, May 17 2018

%Y A column of triangle A021012.

%K nonn

%O 4,1

%A _N. J. A. Sloane_

%E More terms from _Ralf Stephan_, Jan 09 2004