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NOTE ON THE SHAPIRO POLYNOMIALS
JOHN BRILLHART AND L. CARLITZ

1. Introduction. The polynomials P,(x) and Q,(x), which we are
concerned with here, were introduced in 1951 by H. S. Shapiro |5, p.
39]in his study of the magnitude of certain trigonometric sums. They
are defined recursively by the formulas

(1) Papa(2) = Pu(x) +370u(x),  Quis(x) = Pu(z) — 270.(2),
where 720 and Py(x) = Qy(x) =1. (See [4] also. Note in this reference
that Py(x) = Q(x) =x.)

These polynomials have been used by Kahane and Salem in their
book [1] to prove several theorems about trigonometric series. Rider

3 [2] used a generalization of these polynomials to complete the solu-
§ tion of a problem partially solved in [4]. In a more recent paper Rider
! [3] employed the polynomials to exhibit certain subalgebras of the
% group algebra of the unit circle. In particular, in this paper Rider
' obtained a special case of Theorem 4 below.
i s M s oees
% The first few polynomials are
" Pi(x) =1+, Py(x) =1+ o+ a? — 23,
i Py(x) =142+ 2% — 23 4 2t + 48 — 28 f 47

‘ : Oi(x) =1 — g, Qa2 =1+ 5 — a2 + 43,
j Q@) =143+ 2% — 2% — 2t — 45 4 26 _ o7
3 It is clear from this definition that deg P, =deg Q,=2"—1.
1 In this note we will derive a relation between P.(x) and Q,(x) and
5 use it to show that these polynomials have equal discriminants, We
f will also find a formula for the resultant of the two polynomials, and
= develop an explicit formula for their coefficients. The latter will then
% be used to compute the value of P.(x) at x= 41, +4, and certain
4 other points on the unit circle.
; 2. We begin by deriving the relation that exists between P.(x)

and Q.(x).
THEOREM 1. Qu(x) = (—1)"""1 P, (—1/x), n=0.

Proor. By induction. The theorem holds for n=0, 1. Assume the
relation for #, #=1. Then
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- |

(_ 1)n+ig? —1pn+l(_ 1/x)
NOMIALS | = (=)™ Pu(=1/2) + (= 1/2)70u(~1/%)]
"2 = (=)™ (= 1)700(2) /371 + 57 (= )P (— 1/2) V1P (x)]
(.(x), which we are .' = Pu(z) — 22°0n(2) = Qnsi(x). B )
- H. S. Shapiro [5, p.
nometric sums. They ! The following properties of the discriminant D of a polynomial will
be of use in establishing the corollary below. Let ¢#0 be a constant
! L . and f(x) by a polynomial of degree #n. Then
i, | ) D(f(ex) = D).
Note in this reference (i1) D(cf(x)) =c>D(f(x)).

(i) D(x"f(1/x)) = D(f(x)).

2 and Salem in thei
MEH g en bt heix CoroLLARY. D(P,(x)) =D(Q.(x)), n=0.

ometric series. Rider

o complete the solu- PROOF.
re recent paper Rider ' .
1 subalgebras of the D(Qn(2)) = D((—=1)"x*1P,(—1/x))

in this paper Rider ‘ = D((—1)rt1x?1P (1/x)),

using (i) with ¢ = —1. The corollary then follows from (ii) and (iii). [l
The first few completely factored values of D(P,(x)) are listed in

ot — 3,
b4 g the table below

- 20 - 27, |

e -l I . | AR £
, ! = : (2 ‘ LI\ L g\n))
o > 1|1

On=271. 2 |-2211 = — W4 (782

P.(x) and Q,.(x) and :
1| discriminants. We . ‘3 210-5%-193

wo polynomials, and 4 234.32834009652827

The latter will then

1, +14, and certain We next recall several properties of the resultant R of two poly-

| nomials f and g of degree # and m respectively.
! (1) R(f, cg) =c"R(f, g), ¢ a constant.

xists between P,(x) | (it) R(f, g) =a?R(f, g+Nf), where a is the leading coefficient of f,
- \ is an arbitrary polynomial, and d =deg g—deg (g+MNf).
0. ; (iii) R(f, g) = (—1)""R(g, f). :

(iv) R(f, gh) =R(f, g)R(f, ).
THEOREM 2. R(P,(x), Qu(x)) = (—1)r=122""—n—2 5> 1,

n=0, 1. Assume the

sed form, September 18,

Proor. For n=1 we have R(P1, Q1) =2. Suppose n>1. Then
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116 JOHN BRILLHART AND L. CARLITZ [May

R(Pm Qu) = R(P"-—l + xynleﬂ—lv Pﬂ—l - leQn-—l)

= R(Pn_l -+ xTHQn—I, 2Pn—-l)

= — 22“—_1R(Pn—l, Py + x”—lQn—l)

= — ZzﬂhIR(P,,_i, x’HQn._x)

= — 2" 1R(Pn_y, 22 Y R(Pr1, On_v).
But R(P,_y, x”" ") =1. Hence R(P,, Q) = — 22"~V R(P,_1, Qu_y). From
this reduction step, used repeatedly, we obtain+ the evaluation
R(Pn, Qu)= {10 (=270} R(Py, Q) =(—1)12¢"2 |

The next theorem permits the generation of P,(x) and Q,(x) with-
out combining the two types of polynomials.

THEOREM 3.
Popi(x) = Po(2?) + xPp(—2%), n = 0.
0ria(®) = Qu(a®) +20u(—=2Y), n 2L
P_ROOF. By induction. The formulas are true for =0, 1. Assume
both formulas hold for #, n=1. Then
Papr(x) = Pu(x) + 2%0(2)
= [Pos(x?) + 2Pri(—29)] + 27 [Qu1(3?) + 20n_1(—57)]
= [Paca(3?) + 27 0ua (6] + #[Pacs(=5%) + 22 0ucs(—27)].

Hence,
/9\ D [N . DN L DS )
\<~y Oppany T a2 g\&7) i Tipa X7,

The formula for Q,11(x) is established in a similar manner.

3. We now turn to an investigation of the coefficients of P,(x).
(The corresponding results can be obtained for Q.(x) through the use
of Theorem 1.) ’

It is clear from (1) that P,(x) has coefficients +1, without gaps,
and that the first 2» coefficients of P,.1(x) are identical with those of
P,(x). It follows then that these coefficients do not depend on #, so

we can write P,(x) = D2 23  a(r)xm, n=0. (We may, of course, also
consider P,(x) as the first 2* terms of the infinite series P,(x)
= 2o a(r)xn)

We will now derive an explicit formula for a(r).

THEOREM 4. If we write r=rotr1-247:-224 « - - F7,-2%, k=0,
ri=00r 1, then -



|LITZ (May

L1 = x!"—lQn—l)

1)

2= 0n-1)
1)

Pra1; On-1)-

"~ R(Pu-1, Qn-1). From
obtain the evaluation
)u——l22”+‘—n—2_ B

[ P.(x) and Qa.(x) with-

x>0

n=1.

ue for n=0, 1. Assume

1(5*) + 20n_s(—2?)]
[—2%) 4+ 22 Qas(—2?)].

»T)

nilar manner.

e coefficients of P,(x).
- @.(x) through the use
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3) a(r) = (—1)rorvkrirok - Frieirk,

Proor. We observe in (2) that the even and odd degree terms on
the right side are separated, which allows us to equate coefficients,
obtaining the relations a(2r) =a(r) and a(2r-+1) =(~1)a(r). If we
write a(r) = (— 1), then .

(4) e(2r) = e(r) and e(Q2r + 1) =7+ e(r) (mod 2).
Proceeding by induction on k, we verify for k=0 that 1=a(r)
=(~—1)% where ro=0or 1. Assume next thate(r) =ryrotros+ - - - +
etk for any r=ri4-r- 24 - - - Fr.- 281 of E digits. Consider the
number 2r47,, where ro=0 or 1. Then using (4) e(2r+7¢) =ror+e(r)
=ronte(r) =roitriret+ - - - e (mod 2).f8 (Note the particular
case a(2) =1.)

4. We next consider the problem of evaluating P,(x) at certain
points on the unit circle. We begin with

THBEOREM 5.
Py (1) = 27, Ponypi(1) = 27FY n = 0.
Pz,,(—l) = 2", P2n+1(“‘1) = 0, n g 0.

PRrooF. Let §(»n) be the number of a(r) in P,(x) that are positive.
In particular, let 8¢(n) be the number of ¢(2r) and 8,(») be the number
of a(2r+1) in P,(x) that are positive. Then certainly

(5) 6(n) = 85(n) -+ 61(n).

LETRPN . e +ha ein s v
Since the first torm on the right side of (2) centeins 2l! the terms of

even degree, we have

(6) bo(n + 1) = 0(n),
and hence by (5)

@) Oo(n -+ 1) = 64(n) + 0.(n).

Also, since the second term on the right side of (2) can be written as
2t (= Dra(r)x+!, we find that

61(n 4 1) = p(n) + [27! — 6,(n)].
Adding this equation to (7), and using (5), we obtain
O+ 1) = Oo(n + 1) + :(n - 1) = 204(n) + 271,

Finally, from (6) we derive the recursion relation

- -
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L JOHN BRILLHART AND L. CARLITZ
0(n + 1) = 20(n — 1) + 21,
With the initial conditions 8(0)=1, and (1) =2, the solution is
readily found to be
(8) 6(2m) = 2214 2v1 G(2m 4 1) = 22 20 @ = 0.
Pl From the equation P,(1)=0(n)— [2"—0(n)]=20(n) —2", we con-

clude that Ps,(1) =2" and Ps,.1(1) =27+1 If we now set x=1 in (2),
we have P,(—1)=P,,(1)—P.(1), whence Py (—1)=2" and
Pz,.+1('-1) =, n

With a knowledge of P.(41), we are in a position to find the
values at x=¢m/?. For example, setting x=14 in (2), we obtain
Po1(i) =P.(—1)+iP,(1),whence Py, (4) =7+ 2"and Pyny1 (1) = (141) 27
The values at x = —1 are found by conjugating.

REMARK. It can readily be shown by repeated use of (2) that the
series P, (x) diverges at the dense set of points exp (2777/2*) on the
unit circle.

The authors would like to thank Michael Garvey for his suggestions
on parts of the paper.
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