login
Numbers k such that 17*2^k - 1 is prime.
(Formerly M1028 N0387)
3

%I M1028 N0387 #38 Nov 06 2023 15:01:41

%S 2,4,6,16,20,36,54,60,96,124,150,252,356,460,612,654,664,698,702,972,

%T 1188,1312,3062,4214,4288,5280,9100,20262,21676,24828,46144,62148,

%U 79974,117784,211464,310744,310754,429318,601158,605394

%N Numbers k such that 17*2^k - 1 is prime.

%D H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhäuser, Boston, 1985, Chap. 4, see pp. 381-384.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1.html">List of primes k.2^n + 1 for k < 300</a>

%H R. K. Guy, <a href="/A005165/a005165.pdf">The strong law of small numbers</a>. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]

%H Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k.2^n - 1 for k < 300</a>

%H Kosmaj, <a href="http://www.15k.org/riesellist.html">Riesel list k<300</a>.

%H H. C. Williams and C. R. Zarnke, <a href="http://dx.doi.org/10.1090/S0025-5718-1968-0227095-2">A report on prime numbers of the forms M = (6a+1)*2^(2m-1)-1 and (6a-1)*2^(2m)-1</a>, Math. Comp., 22 (1968), 420-422.

%H <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a>

%K hard,nonn

%O 1,1

%A _N. J. A. Sloane_

%E More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008