login
Numbers k such that 13*2^k - 1 is prime.
(Formerly M2686 N1076)
2

%I M2686 N1076 #40 Nov 06 2023 14:59:00

%S 3,7,23,287,291,795,2203,5711,7927,9443,10095,19071,29611,34651,51875,

%T 55343,77511,166303,233207

%N Numbers k such that 13*2^k - 1 is prime.

%D H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhäuser, Boston, 1985, Chap. 4, see pp. 381-384.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1.html">List of primes k.2^n + 1 for k < 300</a>

%H Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k.2^n - 1 for k < 300</a>

%H H. C. Williams and C. R. Zarnke, <a href="http://dx.doi.org/10.1090/S0025-5718-1968-0227095-2">A report on prime numbers of the forms M = (6a+1)*2^(2m-1)-1 and (6a-1)*2^(2m)-1</a>, Math. Comp., 22 (1968), 420-422.

%H <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a>

%o (PARI) is(n)=ispseudoprime(13*2^n-1) \\ _Charles R Greathouse IV_, May 22 2017

%Y Cf. A032356 (13*2^k+1 is prime).

%K hard,nonn,more

%O 1,1

%A _N. J. A. Sloane_

%E More terms from _Hugo Pfoertner_, Jun 23 2004