login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001770 Numbers k such that 5*2^k - 1 is prime.
(Formerly M1087 N0415)
11
2, 4, 8, 10, 12, 14, 18, 32, 48, 54, 72, 148, 184, 248, 270, 274, 420, 1340, 1438, 1522, 1638, 1754, 1884, 2014, 2170, 2548, 2622, 2652, 2704, 13510, 21738, 25624, 41934, 51478, 52540, 53230, 172300, 245728, 350028, 1194164 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A084213(a(n)+1) is in A136539, for all n. - Farideh Firoozbakht and M. F. Hasler, Nov 03 2012

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..40.

Y. Gallot, Proth.exe: Windows Program for Finding Large Primes

Wilfrid Keller, List of primes k.2^n - 1 for k < 300

H. C. Williams and C. R. Zarnke, A report on prime numbers of the forms M = (6a+1)*2^(2m-1)-1 and (6a-1)*2^(2m)-1, Math. Comp., 22 (1968), 420-422.

Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime

MAPLE

A001770:=n->`if`(isprime(5*2^n-1), n, NULL): seq(A001770(n), n=1..1000); # Wesley Ivan Hurt, Oct 15 2014

MATHEMATICA

Select[Range[1000], PrimeQ[5*2^# - 1] &] (* Vaclav Kotesovec, Apr 28 2014 *)

PROG

(PARI) is(n)=isprime(5*2^n-1) \\ Charles R Greathouse IV, Feb 07 2017

CROSSREFS

Cf. A002254 (5*2^n+1 is prime), A050522 (primes of the form 5*2^n - 1).

Sequence in context: A039011 A132190 A155037 * A032494 A125953 A308357

Adjacent sequences:  A001767 A001768 A001769 * A001771 A001772 A001773

KEYWORD

nonn,nice,hard,more

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Hugo Pfoertner, Jun 23 2004

a(40) from the Wilfrid Keller link by Robert Price, Dec 22 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 16 23:49 EDT 2019. Contains 325092 sequences. (Running on oeis4.)