login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001721 Generalized Stirling numbers.
(Formerly M4803 N2052)
17
1, 11, 107, 1066, 11274, 127860, 1557660, 20355120, 284574960, 4243508640, 67285058400, 1131047366400, 20099588140800, 376612896038400, 7422410595801600, 153516757766400000, 3325222830101760000, 75283691519393280000, 1778358268603445760000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=5) ~ exp(-x)/x^2*(1 - 11/x + 107/x^2 - 1066/x^3 + 11274/x^4 - 127860/x^5 + 1557660/x^6 - ... ) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009

REFERENCES

Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

FORMULA

a(n)=sum((-1)^(n+k)*binomial(k+1, 1)*5^k*stirling1(n+1, k+1), k=0..n). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004

a(n)=n!*sum((-1)^k*binomial(-5,k)/(n-k),k=0..n-1); [From Milan Janjic, Dec 14 2008]

a(n)=n!*[4]h(n), where [k]h(n) denotes the k-th successive summation of the harmonic numbers from 0 to n.With offset 1 [From Gary Detlefs Jan 04 2011]

E.g.f.: (1 + 5*log(1/(1-x)))/(1 - x)^6. - Ilya Gutkovskiy, Jan 23 2017

MATHEMATICA

f[k_] := k + 4; t[n_] := Table[f[k], {k, 1, n}]; a[n_] := SymmetricPolynomial[n - 1, t[n]]; Table[a[n], {n, 1, 16}] (* Clark Kimberling, Dec 29 2011 *)

CROSSREFS

Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705,k= 2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545,  k=7..A051560, k=8..A051562, k=9..A051564.

Sequence in context: A224717 A163413 A287835 * A193308 A080158 A156935

Adjacent sequences:  A001718 A001719 A001720 * A001722 A001723 A001724

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 04:21 EST 2019. Contains 319323 sequences. (Running on oeis4.)