login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001711 Generalized Stirling numbers.
(Formerly M4429 N1873)
23
1, 7, 47, 342, 2754, 24552, 241128, 2592720, 30334320, 383970240, 5231113920, 76349105280, 1188825724800, 19675048780800, 344937224217600, 6386713749964800, 124548748102195200, 2551797512248320000, 54804198761303040000, 1231237843834521600000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=3) ~ exp(-x)/x^2*(1 - 7/x + 47/x^2 - 342/x^3 + 2754/x^4 - 24552/x^5 + 241128/x^6 - ... ) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009

For n > 4, a(n) mod n = 0 for n composite, = n-3 for n prime. - Gary Detlefs, Jul 18 2011

REFERENCES

Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..440[Terms 0 to 100 computed by T. D. Noe; terms 101 to 440 computed by G. C. Greubel, Jan 15 2017]

Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy]

J. Riordan, Letter of 04/11/74

FORMULA

E.g.f.: -log(1 - x)/(1 - x)^3 if offset 1. With offset 0: (d/dx)(-log(1 - x)/(1 - x)^3) = (1 - 3*log(1 - x))/(1 - x)^4.

a(n) = Sum_{k=0..n} ((-1)^(n+k)*(k+1)*3^k*Stirling1(n+1, k+1)). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004

a(n) = n!*Sum_{k=0..n-1} ((-1)^k*binomial(-3,k)/(n-k)). - Milan Janjic, Dec 14 2008

a(n) = ( A000254(n+3) - 3*A001710(n+3) )/2. - Gary Detlefs, May 24 2010

a(n) = ((n+3)!/4) * (2*h(n+3) - 3), where h(n) = Sum_{k=1..n} (1/k) is the n-th harmonic number. - Gary Detlefs, Aug 15 2010

a(n) = n!*[2]h(n), where [k]h(n) denotes the k-th successive summation of the harmonic numbers from 0 to n. With offset 1. - Gary Detlefs, Jan 04 2011

a(n) = (n+3)! * Sum_{k=1..n+1} (1/(2*k+4)). - Gary Detlefs, Sep 14 2011

a(n) = (n+1)! * Sum_{k=0..n} (binomial(k+2,2)/(n+1-k)). - Gary Detlefs, Dec 01 2011

a(n) = A001705(n+2) - A182541(n+4). - Anton Zakharov, Jul 02 2016

a(n) ~ n^(n+7/2) * exp(-n) * sqrt(Pi/2) * log(n) * (1 + (gamma - 3/2)/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 12 2016

MAPLE

a := n-> add(1/2*((n+3)!/(k+3)), k=0..n): seq(a(n), n=0..19); # Zerinvary Lajos, Jan 22 2008

a := n -> (n+1)!*hs2(n+1): hs2 := n-> add(hs(k), k=0..n): hs := n-> add(h(k), k=0..n): h := n-> add(1/k, k=1..n): seq(a(n), n=0..19); # Gary Detlefs, Jan 01 2011

MATHEMATICA

f[k_] := k + 2; t[n_] := Table[f[k], {k, 1, n}]; a[n_] := SymmetricPolynomial[n - 1, t[n]]; Table[a[n], {n, 1, 16}]; (* Clark Kimberling, Dec 29 2011 *)

Table[(n + 3)!*Sum[1/(2*k + 4), {k, 1, n + 1}], {n, 0, 100}] (* G. C. Greubel, Jan 15 2017 *)

PROG

(PARI) for(n=0, 19, print1((n+1)! * sum(k=0, n, binomial(k + 2, 2) / (n + 1 - k)), ", ")) \\ Indranil Ghosh, Mar 13 2017

CROSSREFS

Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705, k=2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545, k=7..A051560, k=8..A051562, k=9..A051564.

Sequence in context: A098405 A104092 A024187 * A088057 A249477 A108434

Adjacent sequences:  A001708 A001709 A001710 * A001712 A001713 A001714

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004

Maple programs corrected and edited by Johannes W. Meijer, Nov 28 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 03:07 EST 2019. Contains 319323 sequences. (Running on oeis4.)