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MATHEMATICS

CONVERGING FACTORS FOR THE WEBER PARABOLIC
CYLINDER FUNCTIONS OF COMPLEX ARGUMENT, Iz

BY

P. WYNN

(Communicated by Prof. A. vAN WIINGAARDEN at the meeting of June 29, 1963)

An ALGOL Programme

‘We now summarise the formalism which has been developed, in the
form of an ALGOL programme. It must be borne in mind, however, that
application of the converging factor to an asymptotic series is but one
of a number of methods by means of which the Weber function may be
computed. Thus this programme is not to be regarded as any sort of
fool-proof procedure by means of which the Weber function may be
computed for any value of argument and parameter. It should be regarded
as a basis from which the interested reader if he so desires may, at the
cost of an hour or so of somebody else’s typing. continue the author’s
provisional inquiry into the numerical behaviour of the converging factor.

Before giving the programme it is necessary to make a few remarks.
The algorithmic language [5] in which this programme is written, does
not immediately cater for arithmetic operaiions upon complex numbers,
It is therefore necessary to construct an arsenal of procedures for doing
this, and to devise a convention which governs their use. We therefore
stipulate that all complex numbers are to be represented by arrays
containing at least two members. There is an integer ¢ which is defined
globally throughout the block in which the complex arithmetic takes
place, and all complex numbers (eg. z, p, ) may be recognised throughout
the programme by virtue of the fact that they contain the index 7 (e.g.
z[1], p[R, s, 1]). i takes two values, zero corresponding to the real part
(e.g. Re(z) =z [0], Re (prs) = p[R, s, 0]) and unity corresponding to the
imaginary part. The integer ¢ may not, therefore, (except in circumstances
which are difficult to envisage) be used for any other purpose.

Referring to the ALGOL programme, there is a procedure eg(one,
other) which carries out an instruction analogous to the operation—
one : = other—for real numbers. Similarly seqeq (third. second, first) carries
out an assignment similar to third =second :=first. The procedure
cm (res, one, other) carries out an assignment similar to res :=one x other,
and cd(res, one, other) one similar to res:=onefother. It is however
necessary to ensure that numbers which occur in the arithmetic as real

numbers are treated as such (i.e. with their imaginary parts put equal

to zero), and for this purpose the procedure real (variable) is used. The
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function of further procedures, such as mod(it) is obvious. The input to
all these procedures can either take the form of a complex number, or
a linear combination of complex numbers in which the coefficients are
real. Further details are to be found in [6].

It will be recalled that f.(k) is determined from B,_1(k) and By_a(k),
thus we need only store in the machine two vectors of coefficients, since
when fy(k) has been computed its coefficients may be written upon the

‘space occupied by those of f,_s(k) since the latter are no longer needed.

But we also wish to make the programme as comprehensible at a glance
as possible. We therefore introduce integers R, Rminusl, Rminus2
which take on the values 0, 1, 0 when 7 is even and 1, 0, 1 when 7 is odd.
In this way the mathematical formulae and the algorithmic formulae
preserve a close similarity, and the required economy in the use of storage
space is achieved.

Having evaluated f,(k) (by a Horner process in both the cases in which
Br(k) is expressed as a polynomial and as a series of factorial funétion)
the series > fr(k)2—7-1z-2" is summed either as far as a given upper bound

r=0
rmax, or until
{ |Brer(k)2r 22722 > | By (k)2-r-1z — 2| and

(118) (( |ﬂf+2(k)2_r_3x-2r_4l ~ |ﬂr+l(k)2—r—2x—2r—2|

when it is assumed that the converging factor series has itself an asymptotic
character and has begun to diverge.
As the terms fs(k)2~"-lx~% are produced the e-algorithm is applied

| immediately. It will be recalled that only the quantities & with even

suffix are of interest in the present application. As these are produced
they are mapped onto a display vector (di[0, ms,]), and afterwards
picked out and printed in a table which corresponds to the e-arrays
(Table I) with the columns of odd order missing. :

With these remarks in mind and the comments to guide him the
following ALGOL programme may be read without difficulty.

It reads, as data, a, z, and 0/x, and immediately priﬁts out a, z, 0/=,
k and m. It then computes and prints out the terms wug, ui, ..., up-1 of
the asymptotic series, their partial sum, and u,. It then computes and
prints out (real and imaginary parts separately) the coefficients p, s, the
coefficients ¢, ; derived from them by means of equation (112), the value
of the polynomial (k) (real part, imaginary part, modulus) and of the
term B,(k)2-r-1z-27; if condition (118) is not obeyed the term is added
in to the converging factor sum. Application of the e-algorithm to the
converging factor takes place at the same time. After r—=rmax the
numerical sum I',= Y f,(k)2-7-1x-2", the product u,/, and the modified

n—1 r=0 .
sum 3 %ur+u,ly are printed out in turn (real part, imaginary part, and
r=0 : . .
modulus). Next the (triangular) even column e-array resulting from the
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application of the e-algorithm to the converging factor are printed (real
and imaginary parts separately) and two further triangular arrays which
correspond to the application of the transformed converging factor are
also printed. The whole process is then repeated with the computation
of gy '

In this way one is able to observe the numerical behaviour of the
asymptotic series (6), the coefficients p, ;. 9r,s and to check these; one is
able to observe how rapidly the converging factor series converges, the
effect of applying the e-algorithm to it, and the improvement which is
to be obtained by applying it.

A separate programme has been made for the singular case in which
arg (z)=m/2. Its construction is as above with the exception that all the
quantities involved are real, and the computation of p, s and g¢,,; proceeds
simultaneously.
comment Converging factor for Weber function of complex. argument :
begin integer rmaz : rmax i=read ;

begin real a, z, multiple of pi, xsquared, lambda, mu, k, theta,

power of x ;
integer 1, 7, s, n, j, twormax, sanfang, rs, col, R, Rminl, Rmin2, rl ;
boolean polynomial, still converging, display converging factor alone ;
array aux0, auxl. aux2, phi, 2, zsquared, )
u, sum, converging factor [0 : 1],
29[0: 1,0 : rmax, 0 : 1], betar, termr[—2:0,0:1],
modtermr[— 2 : 0], {[0 : rmax], check[0 : rmazx, 0: 1],
IO :rmax+1,0:17], di[0:1,1: {((rmax+1)
» X (rmax+5))=—4,0:1];
procedure eg(one. other) ; real one, other ; '
for ©:=0,1 do one : =other ;
procedure seqeq (third, second, first) ; real third, second, first ;
for ¢:=0,1 do third : =second : = first ;
procedure cm(res, one, other) ; real res, one, other ;
begin real Reone, Imone, Reother, Imother ;

1:=0 ; Reone :=one ; Reother :=other ;

t:=1; Imone :=one ; Imother : = other ;

res : = Reone x I'mother — I'mone x Reother ;o

©:=0 ; res := Reone x Reother — Imone x Imother
end ;
procedure cd(res, one, other) ; real res, one, other ;
begin real Reone, Imone, Reother, 1 mother, denom ;

1:=0; Reone:=one ; Reother‘:‘: other ;

t:=1; Imone :=one ; Imother :=other ;

denom : = Reother x Reother + Imother x Imother 3

res : = (Imone x Reother — Reone x Imother)|denom ;
1:=0 ; res:=(Reone x Reother + Imone x Imother)[denom
end ; ‘




©

rseries;

r series ;
+ factor

- aux0) ;
nverging

1 do
do
\'J— ]) dO

NuMmEeRricaL RESULTS

The Non-s

ingular Case

Some numerical results which have been produced by means of the
preceding ALGOL programmes are summarised in the following tables
which relate to the choice of argument

2= 3.5¢" a=0.0 (ie. n =17, k= 0.25).

Table I gives the terms (real part, imaginary part and modulus) and
the partial sum of the asymptotic series (6)

TABLE 1

” Re(u,) Im(u,) | ur |

0 — 0.50845 2329 - 0.16489 5465 0.53452 2484
1 — 0.00504 7820 — 0.01556 4867 0.01636 2933
2 4+ 0.00277 9441 — 0.00090 1396 0.00292 1952
3 + 0.00030 3531 + 0.00093 5934 0.00098 3923
4 — 0.00046 5579 + 0.00015 0991 0.00048 9451
5 — 0.00009 9531 — 0.00030 6902 0.00032 2638
6 + 0.00025 2098 — 0.00008 1758 0.00026 5024
6 .

3 ur — 0.51073 0190 + 0.14912 7467 0.53205- 6696
r=0 :

7 + 0.00008 0447 + 0.00024 8056 0.00026 0775

Tables 1T and III give the polynomial

coefficients gr,s respectively

——

o —

coefficients p,s and factorial

TABLE II
Ts 0 1 2 3 5
0 + 1.0
+ 1.0
1 — 20 + 2.0
— 2.0i 1 0.0
2 4+ 1.0 — 12.0 4 2.0
4 12.0i + 0.0 — 2.0i
3 + 60.0 + 76.0 — 24.0 + 0.0
— 98.0i + 38.0i + 24.0i — 4.0 .

4 — 1175.5 + 480.0 4+ 336.0 — 0.0 — 4.0
: 4 747.5i0 — 872.0i — 170.0i + 80.0i — 4.0i
TABLE IIT

e 0 ] 2 3 4
0 + 1.0
+ 1.0i
1 -~ 20 + 2.0
— 2.0i 4+ 0.0
2 + 1.0 — 8.0 + 2.0
© - 12.00 — 4.0i — 2.0
3 4+ 60.0 L+ 28.0 — 24.0 0.0
— 98.0i 4 70.0i + 0.0i — 4.0
4 — 1175.5 + 160.0 4 224.0 — 48.0 © — 4.0
4 747.5i — 924.0i 4+ 198.0i + 32.0i — 4.0i-
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Table IV gives the values of the coefficients f,(k) and the terms }

. ) An Al
Br(k)2-r—1z=2r, the numerical sum of the converging factors series, the of th
n—1 ; €~
product u,Cyn and the modified sum Y wur+usCp | value o
r=0 .
TABLE IV
. ) Br(k) Br(k) ‘ InTul
Re {f:(k Im {Bi(k k R {L; {_} Brlk) a
r e {f(k)} m {B(k)} |B-()]| €\ orriger Im or+iger Or+iger coefficie
0 +1.0 + 1.0 1.414214 + 0.5 + 05 0.707107 f constan
i 1 —15 — 2.0 2.5 — 0.030612 — 0.040816 0.051020 ! sequeng
! 2 — 1.875 + 11.0 12.0221 — 0.001562 + 0.009892 0.010014
1 3 + 77.5 — 87.0625 116.560 -+ 0.002635 — 0.002960 0.003963
: 4 — 1274.52 -+ 520.109 1376.56 — 0.001769 -+ 0.000722 0.001910 0
l Cn  + 0.468692 + 0.466837 0.661520 1
! unCn — 0.000078097 4+ 0.000153817 0.000172508 \ g
| n—1
E > ur + usCn  — 0.510808287 -+ 0.149281284 0.532174791 ‘f 4 -
:| =0 f 5 &
| Tables V and VI give the real and imaginary parts respectively of 3 3
| . . : . . . —2
- those modified sums which are to be derived by applying the e-algorithm 5 8 416
. . t 1
to the converging factor series, and using the members of the resulting i
even column g¢-array al approximations to the converging factor
TABLE V , —
- re
‘ m 0 2 4
1 — 0.51081 3995 — 0.51080 6941 : (1)
2 — 0.51080 6332 — 0.51080 8523 — 0.51080 8194 9
3 — 0.51080 8912 — 0.51080 8171 — 0.51080 8220 3
4 — 0.51080 7966 — 0.51080 8223 i
| 5 — 0.51080 8287 5
, TABLE VI ! 6
| - 7 —
‘ m 0 2 4 8 41
1 + 0.14929 1718 + 0.14928 1499
| 2 — 0.14928 0841 -+ 0.14928 1472 -+ 0.14928 1461 Numy
‘; 3 4 0.14928 1250  + 0.14928 1442 4+ 0.14928 1440 converg
i 4 + 0.15928 1665 + 0.14928 1438 ’ - i]lu°-f
-_ 5  + 0.14928 1284 : : ! ‘ ;
| . when a
‘_ The value of Si(a;z) computed by means of the asymptotic series
! and converging factor may be checked by use of the convergent ascending
' power series
a 1 1 1
Fi(5+5357)
S]_(a' 2) = 9-06/2=1/471/2 2%,
| )
24
(119) e, 3.3 1 :
1 (‘_’+Z; 5> '522)
— 212y = I . 1 In ¢t
r g+ Z) i : of the

{ E . _ . 50
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1 ‘ogramme which computes the function Si(a; z) by means
tictors series, t

19) 1s given in [6]. When a=0 and :=3.5¢""1 the correct
) computed by means of formula. (119) is

—0.51080 8214 + i0.14928 ‘1449,

el } Bl and VIIIrespectively are given the polynomial and factorial
2rehgur 2rih and ¢, when 6 =0 and a=1/s. It will be noticed that the

constant terms +1, —1, +1, +1, —183, +47. +73. are identical with a

i 0.707107 . . .
sequence of numbers computed by Airey and mentioned by Miller

o30S 16 0.051020
foas02 0.010014

i v’
§02960  0.003963 :" ‘/ILG"?— 1663 fé@'-f"/TABLE VII

0722 0.001910 ' 0 i ! v
JuGs3T  0.661520 | 1 1 +1 Y
- ]
) 0153817 0.000172508 | 2 41 -3 +1 55
| 3 +17] +7 —6 +1
-u281284 0.532174791 ; 4 — 13V -5 + 25 —10 +1
;' 5 + 47 — 93 — 60 -+ 65 —15 =1
~ respectively of i 6 T8 4637 203 280 +140 —21 41
i h&'e-al orithm { 7 — 2447 — 1425 -+ 3710 + 77 —910 266 —28 +1
3 g o | 8 16811 —22341 — 21347 -+ 13146  + 2667 — 2304 +462 —36 +1.
of the resulting i '
T |
sing factor | _é TABLE VIII
!
S ! ” 0 1 2 '3 4 5 7 7 8
4 ‘ o
—@- | o 1
N 1 —1 o+ 1
1030 8194 / :
EEs 2 +1 -1 +1 C[
14 f :
1us0 8220 ’ 3 1 1 0 11 ‘_’5
I 4 — 13 + 13 -7 + 2 + 1
. : 5 + 47 —47  £30  — 15 +5 L
| 6 + 73 — 73 + 13 +20 - — 20 +~9 41
'—4% 7 — 2447 — 2447  — 1260 + 413 — 70 — 14 L 14 + 1
— l 8 + 16811  — 16811 + 9629 4074 + 1323 — 294 + 14 +20 +1
H28 1461 f Numerical experiments indicate that the rate of convergence of the
928 1440 I

converging factor serics is not greatly influenced by the value of . This
is illustrated in Table IX which gives the values of 1P0(0.25)1 and |B4(0.25)]
. . when arg (z)=n/4 and a=0, 1.5, and 3.0

ivinptotic series !

rgent ascending TABLE IX
o ' a 1Bo(0.25)] 184(0.25)]
, 1.41421 1376.56
| o 1.5 1.41421 1403.36
) 3.0 1.41421 1378.71
:nl‘ .3_),' 5 22) ’
f""l——. . b In contrast with this, the effect of arg (z) upon the rate of convergence
AT ;) : ‘ of the converging factor series appears to be very great; the rate of
50 Series A ' '
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convergence decreases markedly as arg (z) increases from 0 to z/2. This
is illustrated in Table X which gives the values of |$(0.25)| and |£4(0.25)]
when a=0 and arg (z)=0, #/8, 7/4 and 3x/8.

TABLE X
arg(z) |Po(0-25)| |4(0.25)|
0 1.0 73.12109
/8 1.08239 131.64265
/4 1.41421 1376.55506
37/8 2.61313 51129.210

The Singular Case

The numerical results produced by the preceding ALGOL programmes
for the case in which the argument is pure imaginary may be illustrated
by the following Tables which relate to the case a=0, z=4.51, n=11,

k=0.25.

Table XTI gives the terms and partial sum of the asymptotic series

TABLE XI

74.4748
1.3791
0.1489
0.0303
0.0091
0.0036
0.0018
0.0010
0.0007
0.0005
0.0005

owgoqa:::z»o:w»—-o
i e e

[

10
S u,  + 76.0508
r=0

11 + -0.0005

3638
6364
8373
4854
3266
4179
0965
7718
4721
9192
2725

5994
2163

Tables XIT and XIIT give the pdlynqmial and factorial coefficients

Prs and grs respectively ‘
TABLE XII

sr 0 1 2 3

0  — 0.6666 667  — 1.2629 6206 -+ 12.0902 .9982  — 113.7407 9955
I +1.0 — 1.3333 3333 —3.0518 5185 4 30.6473 5449
2 + 1.3333 3333 — 1.2851 8519  — 19.2007 0547
3 — 0.3333 3333 4 29229 2292 — 0.8864 1975
4 — 0.6666 6667 + 3.5206 2963
5 + 0.0666 6667 Z1.2444 4444
6 + 0.1777 7778
7 — 0.0095 2381

|
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TABLE XIII

s 0 1 2 3
0 — 0.6666 6667 — 1.2629 6296 4 12.0902 9982 — 113.7407 9955
1 + 1.0 0 — 1.0 + 2.1055 5556
2 — 0.6666 6667 + 1.3814 8148 — 6.0451 4991
3 — 0.3333 3333 + 0.8888 8889 — 0.8419 75631
4 4+ 0.6666 6667 — 1.8037 0370
5 + 0.0666 6667 — 1.2444 4444
6 : — 0.2222 2222

— 0.0095 2381

Table XIV gives the values of the coefficients f(k) and the terms
Br(k)2-r—ta~2r. the pumerical sum of the converging factor series, the

n—1
product unCn, and the modified sum > %r+unCan

r=0

TABLE XIV
r Brlk) Br(k)2-r-1z2
0 _ 0.4166 6667 — 0.2083 3333
1 — 1.5181 7130 — 0.0187 4286
2 + 11.2791 96 + 0.0034 3826
3 — 107.2802 4 — 0.0008 0747
4 + 1510.9878 + 0.0002 8081
5 — 27825.923 : —.0.0001 2769
’ Cy — 0.2242 9228
unCn  — 0.0001 1670

10
> ur + uuCn + 76.0507 4294

r=0

Table XV gives the modified sums which are to be derived by applying
the s-algorithm to the converging factor series, and using the members
of the resulting even column e-array as approximations to the converging
factor. '

TABLE XV

m 8 -0 2 4. 6

4+ 76.0507 5127 -+ 76.0507 4154

4 76.0507 4149+ 76.0507 4328 -+ 76.0507 4328 .

4+ 76.0507 4329+ 16,0307 4286 - - 76.0507 4286 -+ 76.0507 4286
+ 76.0507 4286  + 76.0507 4301  + 76.0507 4301 ‘

4+ 76.0507 4301 -+ 76.0507 4294 :

4+ 76.0507 4294 : -

S L W N~

When a=0.0 and z=4.5¢, the modulus of expression (119) is
76.0507 4302. '
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It would appear that in the singular case the improvement effected
by applying the e-algorithm to the converging series is not so marked.

The effect of the parameter a upon the rate of convergence of the
converging factor series is illustrated in Table XVI which gives the
values of [£y(0.25)] and [$4(0.25)] when a=0, 1.5, and 3.0

TABLE XVI
a |o(0.25)| |£a(0.25)|
0 0.4166 6667 107.2802 4017
1.5 0.4166 6667 5.0140 1211
3.0 0.4166 6667 151.9949 9718

The effect of non-zero u appears to be rather strong.
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