login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001646 Number of self-dual codes of length 2n over GF(4). 0

%I

%S 1,1,1,2,3,5,10,21,55

%N Number of self-dual codes of length 2n over GF(4).

%H J. Conway, V. Pless, N. Sloane, <a href="https://doi.org/10.1109/TIT.1979.1056047">Self-dual codes over GF(3) and GF(4)of length not exceeding 16</a>, IEEE Trans. Information Theory 25 312-322 1979.

%H W. C. Huffman, <a href="http://dx.doi.org/10.1016/j.ffa.2005.05.012">On the classification and enumeration of self-dual codes</a>, Finite Fields Applic. 11 (2005), 451-490.

%H F. J. MacWilliams, A. M. Odlyzko, N. J. A. Sloane and H. N. Ward, <a href="https://doi.org/10.1016/0097-3165(78)90021-3">Self-Dual Codes over GF(4)</a>, J. Combin. Theory, A 25 288-318 1978.

%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.

%H E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).

%K nonn,hard

%O 0,4

%A _N. J. A. Sloane_.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 04:15 EDT 2020. Contains 334859 sequences. (Running on oeis4.)