login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001642 A Fielder sequence.
(Formerly M2367 N0937)
5
1, 3, 4, 11, 21, 36, 64, 115, 211, 383, 694, 1256, 2276, 4126, 7479, 13555, 24566, 44523, 80694, 146251, 265066, 480406, 870689, 1578040, 2860046, 5183558, 9394699, 17026986, 30859771, 55930361, 101368389, 183720435, 332975581, 603486148, 1093760479 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

Fielder, Daniel C.; Special integer sequences controlled by three parameters. Fibonacci Quart 6 1968 64-70.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.

Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 1, 1).

FORMULA

G.f.: x(1+2x+4x^3+5x^4)/(1-x-x^2-x^4-x^5).

MAPLE

A001642:=-(z+1)*(5*z**3-z**2+z+1)/(-1+z+z**2+z**4+z**5); [Conjectured by Simon Plouffe in his 1992 dissertation.]

MATHEMATICA

LinearRecurrence[{1, 1, 0, 1, 1}, {1, 3, 4, 11, 21}, 50] (* T. D. Noe, Aug 09 2012 *)

PROG

(PARI) a(n)=if(n<0, 0, polcoeff(x*(1+2*x+4*x^3+5*x^4)/(1-x-x^2-x^4-x^5)+x*O(x^n), n))

CROSSREFS

Sequence in context: A000677 A110865 A152982 * A001643 A247171 A005218

Adjacent sequences:  A001639 A001640 A001641 * A001643 A001644 A001645

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 17 10:43 EDT 2017. Contains 293469 sequences.