|
|
A001641
|
|
A Fielder sequence: a(n) = a(n-1) + a(n-2) + a(n-4).
(Formerly M2364 N0935)
|
|
2
|
|
|
1, 3, 4, 11, 16, 30, 50, 91, 157, 278, 485, 854, 1496, 2628, 4609, 8091, 14196, 24915, 43720, 76726, 134642, 236283, 414645, 727654, 1276941, 2240878, 3932464, 6900996, 12110401, 21252275, 37295140, 65448411, 114853952, 201554638, 353703730, 620706779
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..1000
Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 1).
|
|
FORMULA
|
G.f.: x*(1+2*x+4*x^3)/(1-x-x^2-x^4).
a(n) = n*Sum_{k=1..n} Sum_{j=floor((4*k-n)/3)..floor((4*k-n)/2)} binomial(j,n-4*k+3*j)*binomial(k,j))/k. - Vladimir Kruchinin, May 25 2011
|
|
MAPLE
|
A001641:=-(1+2*z+4*z**3)/(z+1)/(z**3-z**2+2*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
|
|
MATHEMATICA
|
LinearRecurrence[{1, 1, 0, 1}, {1, 3, 4, 11}, 50] (* T. D. Noe, Aug 09 2012 *)
|
|
PROG
|
(PARI) a(n)=if(n<0, 0, polcoeff(x*(1+2*x+4*x^3)/(1-x-x^2-x^4)+x*O(x^n), n))
(Maxima) a(n):=(sum(sum(binomial(j, n-4*k+3*j)*binomial(k, j), j, floor((4*k-n)/3), floor((4*k-n)/2))/k, k, 1, n))*n; /* Vladimir Kruchinin, May 25 2011 */
(MAGMA) I:=[1, 3, 4, 11]; [n le 4 select I[n] else Self(n-1) + Self(n-2) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 09 2018
|
|
CROSSREFS
|
Cf. A060945.
Sequence in context: A290493 A266384 A248825 * A007382 A127804 A027306
Adjacent sequences: A001638 A001639 A001640 * A001642 A001643 A001644
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|