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Abstract

The recursive behavior of selected complete and incomplete sequences of
infegers is investigated by simulafing ‘“mathematical”  systems with
conventional linear system diagrams, concepls, and nomenclature. For
instance, impulse response in the linear systems simulales the successiwe
appearance of sequence tnlegers.

Practical application arises from the development of algebraic methods
for identifying and ezlending a class of incomplete sequences. A worked
ezample illustrales how a recursion is tested and an incomplete sequence
extended indefintlely.

INTRODUCTION. Mathematicians and engineers alike have an interest in
properties of sequences of numbers. They frequently find it convenient to
express these sequences in one or more of three alternate, yet equivalent,

forms. These are (1) a closed expression for the general jh term, (2) a
generating function in a variable, say z, such that its series expansion has the
term as the coefficient of zk, and (3) a recursion formula (i.e., differénce

L‘quation) in k& with sufficient boundary conditions to initiate the sequence.
However, il the starting point for finding (1), (2), or(3) consists of only a finite
number of sequence terms, it may be very difficult (or, at worst, impossible) to
ascertain the desired forms, (1), (2), and (3).

By simulating the mathematical systems of the sequences by
conventional linear systems, the visual, computational, and other aspects of
linear system theory are available to help explain and classify certain kinds of
sequence behavior. The simulations are often useful in finding ways to
complete the mathematical properties of the sequences. At the same time, the
mathematics of sequences may provide insights into linear system behavior.
This point of view is consistent with today’s cross-disciplinary trends.

We will be concerned only with those sequences {a) whose members are
either integers or rational fractions and are zero for negative indices, (b) which
ultimately exhibit linear recursive behavior, and (c) which are index-invariant.
Index-variance and/or nonlinear recursiveness is beyond the scope of the
present discussion, and all further reference to recursion will imply sequences
governed by (a)-(c) above.

When only a finite portion of sequences are available, it is usually not
known whether such sequences are recursively extendable. If they prove to be,
and if enough terms are known, the formula for the general term can be
calculated and the sequence continued ad infinitum.

Assume that the last member of a finite sequence has index k. If
members of index kn through k-1 satisfy an 't order recursion and if that

recursion can satisfy the known £h (last) member, the finite sequence is said

to be potentially recursive of order n. Continued application of the recursion
then can generate as many successive terms as desired, all of which are

recursively compatible with the original finite sequence including the Kb

indexed term. If no n can be found, the discussions are invalid since this
implies either insufficient information, or worse yet, that the chosen sequence
was part of an index-variant and/or nonlinear recursion.

We will classify sequences with types of linear systems and excerpt ideas
from linear system theory to develop the recursion formulas, the generating
functions, and the general term for potentially recursive sequences. In so doing,
we will present a straightforward method for obtaining the generating function

IASTED INTERNATIONAL SYMPOSIUM
SIMULATION AND MODELLING ’89
LUGANG, SWITZERLAND
JUNE 19-22, 1989 '

SIMULATION CONCEPTS FOR STUDYING INCOMPLETE
(BUT POTENTIALLY RECURSIVE) SEQUENCES

Daniel C. Fielder and Cecil O. Alford
School of Electrical Engineering, Georgia Institute of Technolog}

Atlanta, Georgia 30332

in closed form for potentially recursive sequences and their infinite extensions.
From a system point of view, the discrete sequence values are the impulse
responses from initially quiescent discrete-time (sampled-data) systems, where
the values of variables are assumed to exist only at integral units of ¢ (time)
starting with { = 0.

SYSTEM THEORY DEVELOPMENT. Discrete linear (sampled-data) systems
have linear difference equations as mathematical models. One of the most
useful devices for visualizing these systems is the simulation diagram. (See
Figures 1 and 2 for examples.) Simulation diagrams are oriented flowgraphs
whose weighted edges direct and modulate the transmission of values through
the system from an input x({) to an output y({). For discrete systems, an edge

weight is either a coefficient from the difference equation or is a delay

operator, z'l, represented physically by a delayer. The values existing at the
outputs of the delayers are the state variables of the system and are, thereby,
components of the state vector. A delay operator acts on time functions to
produce replicas delayed by one time unit. The input and output nodes of a
simulation diagram appear as summers which linearly combine incoming
transmissions to the node into a single output from the node.

Although there are indeed physical real-time systems whose behavior
closely approximates that predicted by difference equations, we will consider
only exact discrete mathematical systems. The variable ? need not be restricted
to “time” but can simulate spatial or index variation. The output from the
mathematical system is a sequence whose values are equally spaced by one
unit of 1.

The first descriptive classification for our systems is Mealy or Moore.
These terms are borrowed from linear automata theory (see Hill and Peterson
(1], pp. 300-305). If the output of a discrete automaton is a direct function of
both the input and the state of the system, the system is classified as Mealy.
If, however, the output directly depends only on the state of the system, the
system is classified as Moore. Even though a Mealy and a Moore system may
be called equivalent by virtue of having identical state and output successions,
the output of the Moore system will lag that of the Mealy system by at least
one unit of time. This feature is evident in mathematical systems as well as in
linear physical systems.

The second classification pertains to the number of initial sequence

th

terms which must be accounted for before the n*"' order recursion of the

sequence is established. If the number of terms is n, the sequence and/or its
associated system is called nonsingular. The n terms in the nonsingular case

can also be recognized as the n initial conditions needed for the solution of the

associated nt! order difference equation. If the number of initial sequence
terms exceeds n, the sequence, system, etc. is classified as singular. Sequences
of this type occur when arbitrary values are chosen as ““fillers” for non-physical
or non-existent early terms in what eventually becomes an n-recursive sequence
(see Liu [2], pp. 68-73). The classification names come from a slight
modification of similar terminology in the study of linear sequential circuits
(see Gill [3], pp. 58-67). There will be further reference to this classification as
it applies to simulation diagrams.

Although there are a variety of forms for equivalent simulation
diagrams, the one most suitable for this note is the so-called “shift-register”
form shown in Figure 1.

If by is nonzero, the system and all corresponding mathematical forms
are classified as Mealy. Conversely, if by, is zero, the classification is Moore.
Although substantiation comes later, it can be stated if b and d; through d;
are zero, the classification is nonsingular. If either bO and/or any of the d’s are
present, the classification is singular. It can be observed that either a Mealy or
Moore system can be singular or nonsingular.



Note:
b,= 0 — Moore

b, # 0 = Mealy

S;. S, Sn.y, are state variables
bythrough d,, = 0 — nonsingular

bgor any ot d, through d, # 0 — singular
Lower half operates with feedback.

Input Summer Upper half operates with feedforward.

Figure 1. Shift Register Form of General Simulation Diagram

In anticipation of what is to be developed analytically, it is interesting
to preview the system behavior with comments on a visual inspection of the
simulation diagram. The lower half of the diagram consists of n nested
feedback loops wherein state variables existing at discrete values of ¢ are
weighted and combined, ready to be reintroduced at the next f value to
contribute to the next set of state values. In mathematical as well as physical
systems it is in the feedback loops where the natural behavior of the system, in
this case, recursion, is established. The upper half of the diagram consists of
feedforward paths on which state variables existing at discrete ¢ values are
weighted and combined to form the output. When multiplied by the weights
of b and d edges, the initial state variables as they are ‘“‘swept™ out of the
system form the first n+h terms of mathematical as well as physical systems.

Only after this can the nt® order recursion appear in the output sequence. It is
interesting to note that for given initial state conditions, it is possible (with

some degree of patience and care) to “step’™ a given input sequence through
the simulation diagram to produce an output sequence.

While the simulation diagram of Figure 2 defines a specific second
order, Mealy. singular system, its analysis is representative of how higher order
systems may be treated.

System as shown is Mealy-
singular. 1f bg=0, classification
would be Mealy-nonsingular.

{or §(t) for impulse input)

Figure 2. Simulation Diagram for Second Order System
Application of Mason’s flowgraph formula [4, 5, 6] to the simulation diagram
of Figure 2 produces the operational equality

-1 -2
y(n) bQ + bI: + bO:

x(1) 1

x(1) 1+ a7 )

o
+aO~

( A discussion of Mason’s formula is outside the scope of this note. The cited
references explain how this tool is used, and a rigorous proof is found in Kim
and Chien [7]. ) Cross operation on (1) yields the system’s second order
difference equation as shown in (2).

y(l)+a1_v((~l)+a0_v(t»‘2):l72x(l)+blx(l~1)+box([-?)‘ (2)

The right side of (1) is also the conventional system function in z as shown in

(3).

2
Y(: by + b2+ b
D2 TP 0y, )
7+ a;z + N
INITIAL CONDITIONS FROM IMPULSE INPUTS. Consider expression (2)
where the driving function at ¢ = 0 is the unit impulse, §(¢).

<

In system theory , it is common practice to ‘‘trade off™ initial conditions for
impu]se input effects and vice versa. In essence, difference equation (4) can be

¥() + apy(t1) + agy(1-2) =by8(1) + by8(1-1) + by6(t-2), (4a)

Y(142) + apy(t41) + agu(d) =byb(142) + bi&(141) + bod(D).  (4b)

replaced by its homogeneous form accompanied by appropriate initial or
boundary conditions. To establish the initial conditions, the question which
must be answered is “\What conditions can be found which. in a valid
operation. can force the right side of (4} to be identically zero?”

For t-domain use. the right side of (1) is interpreted as an operator. In
the -domain, however, it is the =transform of the system function, H(:). and
lollows algebraic rules. H(z) is also the response in = to a unit impulse, &(1). at
t=0. When the input is a unit inpulse, the response must equal the H(z) of (3)
since the =transform of a unit impulse is 1. (For convenience the ratio of (3)
has becn rationalized.) However, application of the one-sided =transform [8] to
(4b) leads to

2
V() bor b 4D
(:)_% ISR

1 :2+alz+a0

Acyby5(0))+ ¢+ cg-by5(1)-b, 6(0)) .
:2+(112+ﬂ0 '

where ¢y and ¢, are the first two terms of the output sequence. In order to
reconcile (5) with (3), the right ratio in (5) must vanish. Use of the concepts of
Distribution Theory and Generalized Functions [9] shows that within the
context of our operations, 6(#)=1 when {=0 and §(#)=0 when ¢ is integral and
{#0. The conditions that the right ratio of (5) vanish are

= b2 (6a)

cl :»coal—H)l (6b)

Next consider (4a) at successive instants of £. (Recall that C]s Co ElC
are all zero and that y(k):ck.) Equation (4a) becomes

c0:b2, =0 (7a)

61:—c001+b1, =1 (7b)
cog=-cpay-cyag+by, (=2 (7¢)
Gy=-co0-cyag (=3 = y(3)+ayy(e)+agy(3)=0 (7d)

It is seen that for all discrete 1>3 the ditference equation is homogeneous and,
moreover, can be found by direct inspection of the denominator of (3). That
the recursion, once established, continues indefinitely is not surprising because
we are viewing the direct influence of the feedback polynomial of the
simulation diagram, or, what is the same thing, the characteristic equation of
the difference equation. The coefficients v €ps and ¢y are results of the initial

state of the system and are identically that output condition forthcoming from
the quiescent system under the influence of unit impulse input. [f the
homogeneous form of the second order difference equation

y(t)+aly(t—I)+a0y(l-‘2):0 (8)

Il by or any of d| through dy are present, the h+1 terms, ¢y through
¢y, are functions of by and d| through dh' Even though they contribute to the
magnitude of all succeeding terms, the presence of ¢g through ¢, forces a delay
of h+1 units in recursion emergence. The n terms, Chel through Chan
become boundary values for the homogeneous recursion which starts with

hnal These are the sequence specifications for the singular classification.

If by or any of dl through dh are present, the h+1 terms, ¢ through
¢j» are functions of by and d; through d,. Even though they contribute to the
magnitude of all succeeding terms, the presence of ¢y through ¢, forces a delay
of h+1 units in recursion emergence. The n terms, hy through Ch
become boundary values for the homogeneous recursion which starts with
Chpnal These are the sequence specifications for the singular classification.

One observation is in order at this point. To assure uniqueness in
difference equation presentation, only homogeneous forms are considered since
nonhomogeneous difference equation forms are not necessarily unique. This can
be seen from the following difference equations

c,,—?cn_l:4, 00:3 (9a)
cn—cn‘1:7"~l, 60:3 (9b)
cn—3cn_l+2c"_2:0, 00:3, =10 (9¢)

all of which generate the output 3, 10, 24, 52, 108, . . .



RECURSION PROPERTIES OF SEQUENCES. While the :transform was
useful in obtaining (6a) and (6b), there is an easicr way to continue the ':k If

in the general form of H(:) (see (3)). the numcrator polynomial is divided by

the denominator polynomial a scries in powers of 1/: results. The coefficients
are equal in value to the ¢;'s. llowever. unless some special arrangement is

de, the coefficients, as the index increases. becone complicated expressions

he a’s, b's, and d's (if any are present). making it very difficalt to trace
recursions. If the quotient is pre-specified with s already in place. the

division process can be forced to show the manner in which c;'s are gencrated

from previous x:.k._values. This is. of course. the desired recursion. A brief

example using a third order systemn is shown below.

gt cl/z + c2/:?+...

2 3
L aO\JbBJ + b.22:2 + b]:

3
ik +

+b0

.2 -
cHay? +c0al. +CO”0

(c002+b2):2+(—c0a1+b1):+(-c0a0+bo)

2
s + )89 + ey

(-clag-c0a1+bl):+(-cla1-c0a0+b0)+(-clao)/:

(10)

By equating the coefficients of like powers in the cancelled leading terms. the
buildup of ck's may be observed. More complete divisions and extension to

higher order systems. vield a general pattern. Inspection results for orders threc
and four reveals the extension pattern.

c[]ib3 (1ta) g = by (11D)
€= -c0a2+b2 o = -coa.5l73
€ = -cjay-cyay+h, o = -cay- cpagtby

€3 = »c2a2—clal-c0a0+b0 €3 = ~Coag-cyay-cpa 1+b
€4 = ~C38y-Coay-cia €q = -Cq04-Coly-Cyay- coao+b0
€ = =C489-Cq)-Colly Cp = -C404-C309-Cyay- clao—{»dl
¢ = ~C5ap-Cq ) -Caa) g = ~C503-C40y-C3a1-Coa 0+d0
G2 = ~cay7C58)-c4 0 €7 = ~Cgoy 50y ¢4 300+ dy
- -6702-C6ﬂl-6500 C8 = -C ﬂ$ 6602 cral E4 0
L‘ -CSGQ-C7ﬂl-C600 Cg = -C8ﬂ3-c7ﬂ2-66a1-6500
“10 = 9% %% 7% €10 = %993 g% 7% %%
€11 = 7410%37 %% %89 7%
12 = 11937 ¢10% 9% %%
€13 = 761293711927 %1017 %%
C14 = —clsa3~c12a2-c”al-cmao
15 = 149713 % 124N %

If sufficient coefficients, Qe Cpr €30 - o e Vg known to be be

part of an ultimately recursive sequence, are available, the first n of the last

n+1 equations of tabulations (as exemplified by (11) above) can be used to
form n simultaneous equations for finding Q1 Bpn - o - - a0g The last

equation ( the (n + 1)st) can be used as a substitution check to assure

continuation of the recursion. If this test is successful, substitution of the
calculated and verified a’s in the lower indexed equalities yields the b and d (if
any) coefficients. Knowledge of the coefficients establishes H(z), the generating
function for the series in 1/z By tracing backwards, the simulation diagram
and both forms for the difference equation can be found. Through application
of the inverse ztransform of H(z), the general sequence term appcars.

In starting with a finite sequence, the value of n would probably not be
known. This would necessitate judicious choices of successive trial n's (starting
with a reasonably large n) and constructing tabulations for each » based on
the extended generalizations of (Ila) and (11b). We utilized a computer-
enhanced version of this technique to sucessfully obtain many solutions
including that of the example worked later.

In order to avoid impossible situations and to specify possible choices of

n which might lead to a successful conclusion, the following conditions are
summarized:

A sufficient condition on the minimum number of consecutive terms of

_a potentially recursive sequence. L T I S for finding the

i , H(z), of an 2t order, nonsingular,

>rating function Mealy or Moore,
'stern is that (3n+1) such consecutive terms be available.

Proof: (a) The first n terms, ¢, through ¢ . are needed as boundary

conditions for the anticipated homogeneous equation.

(b) The » terms, - through 3,1 are needed in a set of n

simultancous cquations for calculating the a cofficients of the denominator of
H(2).
(c) The last term, 30 is used with a check cquation to assure

the continuance of the recursion noted in (b).

(d) The n terms, ¢y lhroughc,,n_l,arc necded as independent
coefficients in the set of simultaneous equations described in (b) above. The

bare minimum number of terms required thus total 3n+1. If there is a
possibility of a bO term., 3n+2 terms would be required. However, the system

would Jose its nonsingular classification.

A sufficient condition on the minimum number of consecutive terms of
a potentially recursive sequence, €0 Cpr Cov e v e oy Cpy ey
th

for finding the

generating function, 1I{z), of an n " order, singular, Mealy or Moore, system is

that (3n+Ah+2) such consecutive terms be available, where & is the value of the
highest d index.

Proof: The smgular effects of b, d, through d, even though any or all

of a through d, | are zero, occur before the recursion and the n

({ronémons start. Hence, h+1 must be added to the nonsingular results to
account for the “singular” terms. The total becomes (3n+h+2).

initia

CALCULATION METHODS. It should be quite obvious that in all but the
most clementary recursions, hand or even desk calculator computations would
be impractical. Machine computation using an appropriate program would be
desirable, but the round-off errors in calculations would destroy accuracy when
large integers or lJarge rational fractions are manipulated. Fortunately,
computer algebra programs such as MACSYMA or muMath [10, 11] are
capable of performing symbolic computations and exact computations with
extremely large integers or rational fractions. We used a version of muMath on
an AT clone to obtain values for the a, b, and d coefficients from sets of
sequence terms. The program, written in the muSimp language of mubMath,
was expediently unsophisticated but was able to test and report on eighth and
less order recursions using appropriately sized tables of equations similar to the
itlustrations of (11). Built in capabilities of muMath calculate H(z) directly
once the a coefficients have been found from the n simultaneous equations and
checked against the last sequence termi. From this point, it is routine to
determine the difference equations, simulation diagram, classification of the
sequence, system, and general cocfficient. Now that it has served its immediate
purpose, the program is being revised and compacted for possible later
publication.

NUMERICAL EXAMPLE. Suppose that the 19 sequence values, c0=2, e =-4
02:7, 03:—13, 64:’_’5. 65:-49, 66:97, cT:-193, 68:385, 09:-769, 61021537,
611:—3073, 612:6145, c13:—12289, 614224577, 615:—49153, 616298306.
017:-196609, 018:393217, are available. The minimum term condition, 3n+1,

suggests that =6 would be the largest trial n permitted. Even if the ultimate
recursion were of order 6, no solution could be found unless the system was
nonsingular. I{ the » is. in reality, less than 6, successively smaller trial n’s
would permit increasing latitude with respect to considering possible bO and ¢

coefficients. However, when experimentally searching for real-world solutions,
the likelihood of encountering d coefficients in physical or mathematical
systems is rare.

In our example, the muMath computations ruled out 6"h down
3™ order solutions. The 2" order solution using the selected

simultaneous equations (12a) and (12b) produced aO:'.Z and aI=3. These
values also satisfy check equation (12c).

through

(c16= 98303) 98305 = 49153111— '24577110‘ (12a)
(r”: —196609) - 196609 = —9830501 + 49153a0. (12b)
(cjg= 393217) 303217 = 1966092, — 983054. (12¢)

Now that a sccond order recussion is assured and a4, and a4
known, the search for 6's and d's can proceed from sunLabl]y rearrangcd
equations from the second order version of (11) as shown below.

b{): CO
bl =+ ey
by = ¢y + cpa) + cgag (13)

dl =3+ pap + ¢pg
d2 = ¢4 + cqa) + G0

djy = cy3 + epp0p + €y g



v
“Through substitution in (13) the d's were found to be zero for this examiple.
However, I)0 = -1, bl = 2, and b,_, = 2. Because [7.2 # 0 and bo # 0. the
systern, sequences, elc., are Mealy and singular. The generating function in :

can now be given as

<

In terms of scquence coefficients. the homogeneous difference equation is

(14)

e+ 3¢+ 29 =0, cp=-4cp =7, (15)

with ¢y = 2 as a “filler” consistent with the degree of singularity. Although
the general sequence term, good for ¢ > 1. can be found directly from (15) by
cither classical or ztransform methods, it is easier to use (14) after first
dividing denominator into numerator sufficiently to bring out bO and all d
terms as coeflficients of the quotient and then to extract the inverse ztransform
of the remainder polynomial over the denominator of (14). For our example,

we obtain
4. 5:
f;~ o<, (16)
43242

where the 1/: has been extracted from the bracketed ([ ]} part of (16) so
that the inverse xtransform appears correctly shifted with its series starting
with cl/z.

Erl—

2 +

The right side of (16) reduces to

—= =3: -
|i:+l+:+‘;'} (%)
from which the inverse :transform yields the general coefficient of the
recursive part (properly index adjusted) as

Lol

o= (-1 +3 (-2 (18)

CONCLUSIONS. Under the assumption that linear recursive sequences of
integers are the outputs of hypothetical “‘mathematical™ systems, it was
demonstrated that conventional linear systems could simulate such
mathematical systems. This made it possible for linear system theory to
'vize and predict the behavior of the mathematical systems. To
#plemem the simulation, system theory nomenclature was used to describe
the characteristics of the sequence of integers.

By taking advantage of special properties of linear recursive sequences,
a method for constructing the simulating system was devised. As an additional
consequence, desired features of the sequence itself became evident. However,
success with the method depended on availability of sufficient sequence data
and the use of a computer algebra system to insure exact integer
manipulation,
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