login
Number of 3-line Latin rectangles.
(Formerly M2158 N0860)
4

%I M2158 N0860 #23 Feb 01 2022 23:36:40

%S 0,0,2,36,840,29680,1429920,90318144,7237943552,717442928640,

%T 86171602072320,12331048749268480,2072725870491859968,

%U 404352831489304049664,90605920564322676531200,23110943021722435879157760,6657484407493222296916131840

%N Number of 3-line Latin rectangles.

%D S. M. Jacob, The enumeration of the Latin rectangle of depth three..., Proc. London Math. Soc., 31 (1928), 329-336.

%D S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H S. M. Jacob, <a href="http://dx.doi.org/10.1112/plms/s2-31.1.329">The enumeration of the Latin rectangle of depth three...</a>, Proc. London Math. Soc., 31 (1928), 329-336.

%H S. M. Kerawala, <a href="/A001623/a001623.pdf">The enumeration of the Latin rectangle of depth three by means of a difference equation</a>, Bull. Calcutta Math. Soc., 33 (1941), 119-127. [Annotated scanned copy]

%H <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>

%F a(1) = 0, a(n) = A000186(n) + 2*(n-1)*a(n-1), n > 1. - _Sean A. Irvine_, Sep 25 2015

%Y Cf. A000186.

%K nonn

%O 1,3

%A _N. J. A. Sloane_

%E More terms from _Sean A. Irvine_, Sep 25 2015