login
Related to Latin rectangles.
(Formerly M1304 N0500)
1

%I M1304 N0500 #20 Feb 01 2022 23:36:20

%S 2,4,60,1276,41888,1916064,116522048,9069595840,878460379392,

%T 103547791177216,14588580791234048,2420219602973093376,

%U 466877775127725240320,103607067936116866084864,26204424894484840874483712

%N Related to Latin rectangles.

%D S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H S. M. Kerawala, <a href="/A001623/a001623.pdf">The enumeration of the Latin rectangle of depth three by means of a difference equation</a>, Bull. Calcutta Math. Soc., 33 (1941), 119-127. [Annotated scanned copy]

%H <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>

%F a(2) = 2, a(n) = A001626(n) + 2 * A001627(n-1) + 2 * (n-1) * A001624(n-1). - _Sean A. Irvine_, Sep 25 2015

%K nonn

%O 2,1

%A _N. J. A. Sloane_

%E More terms from _Sean A. Irvine_, Sep 25 2015