login
Related to Latin rectangles.
(Formerly M4017 N1665)
1

%I M4017 N1665 #20 Feb 01 2022 23:34:22

%S 1,5,58,1274,41728,1912112,116346400,9059742176,877746364288,

%T 103483282967936,14581464284095744,2419278174185319680,

%U 466730664414683625472,103580258158369503481856,26198788829773597178540032

%N Related to Latin rectangles.

%D S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H S. M. Kerawala, <a href="/A001623/a001623.pdf">The enumeration of the Latin rectangle of depth three by means of a difference equation</a>, Bull. Calcutta Math. Soc., 33 (1941), 119-127. [Annotated scanned copy]

%H <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>

%F a(2) = 1, a(n) = A001626(n) + A001626(n-1) + A001627(n-1) + (n-2)(a(n-1) + A001625(n-1)). - _Sean A. Irvine_, Sep 25 2015

%K nonn

%O 2,2

%A _N. J. A. Sloane_

%E More terms from _Sean A. Irvine_, Sep 25 2015