This site is supported by donations to The OEIS Foundation.



Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001622 Decimal expansion of golden ratio phi (or tau) = (1 + sqrt(5))/2.
(Formerly M4046 N1679)

%I M4046 N1679

%S 1,6,1,8,0,3,3,9,8,8,7,4,9,8,9,4,8,4,8,2,0,4,5,8,6,8,3,4,3,6,5,6,3,8,

%T 1,1,7,7,2,0,3,0,9,1,7,9,8,0,5,7,6,2,8,6,2,1,3,5,4,4,8,6,2,2,7,0,5,2,

%U 6,0,4,6,2,8,1,8,9,0,2,4,4,9,7,0,7,2,0,7,2,0,4,1,8,9,3,9,1,1,3,7,4,8,4,7,5

%N Decimal expansion of golden ratio phi (or tau) = (1 + sqrt(5))/2.

%C Also decimal expansion of the positive root of (x+1)^n - x^(2n). (x+1)^n - x^2n = 0 has only two real roots x1 = -(sqrt(5)-1)/2 and x2 = (sqrt(5)+1)/2 for all n>0. - _Cino Hilliard_, May 27 2004

%C The golden ratio phi is the most irrational among irrational numbers; its successive continued fraction convergents F(n+1)/F(n) are the slowest to approximate to its actual value (I. Stewart, in 'Nature's Numbers', Basic Books 1997). - _Lekraj Beedassy_, Jan 21 2005

%C Let t=golden ratio. The lesser sqrt(5)-contraction rectangle has shape t-1, and the greater sqrt(5)-contraction rectangle has shape t. For definitions of shape and contraction rectangles, see A188739. - _Clark Kimberling_, Apr 16 2011

%C The golden ratio (often denoted by phi or tau) is the shape (i.e., length/width) of the golden rectangle, which has the special property that removal of a square from one end leaves a rectangle of the same shape as the original rectangle. Analogously, removals of certain isosceles triangles characterize side-golden and angle-golden triangles. Repeated removals in these configurations result in infinite partitions of golden rectangles and triangles into squares or isosceles triangles so as to match the continued fraction, [1,1,1,1,1,...] of tau. For the special shape of rectangle which partitions into golden rectangles so as to match the continued fraction [tau, tau, tau, ...], see A188635. For other rectangular shapes which depend on tau, see A189970, A190177, A190179, A180182. For triangular shapes which depend on tau, see A152149 and A188594; for tetrahedral, see A178988. - _Clark Kimberling_, May 06 2011

%C Given a pentagon ABCDE, 1/(phi)^2 <= (A*C^2 +C*E^2 +E*B^2 +B*D^2 +D*A^2) / (A*B^2 +B*C^2 +C*D^2 +D*E^2 +E*A^2) <= (phi)^2. - _Seiichi Kirikami_, Aug 18 2011

%C If a triangle has sides whose lengths form a geometric progression in the ratio of 1:r:r^2 then the triangle inequality condition requires that r be in the range 1/phi < r < phi. - _Frank M Jackson_, Oct 12 2011

%C The graphs of x-y=1 and x*y=1 meet at (tau,1/tau). - _Clark Kimberling_, Oct 19 2011

%C Also decimal expansion of the first root of x^sqrt(x+1) = sqrt(x+1)^x. - _Michel Lagneau_, Dec 02 2011

%C Also decimal expansion of the root of (1/x)^(1/sqrt(x+1)) = (1/sqrt(x+1))^(1/x). - _Michel Lagneau_, Apr 17 2012

%C This is the case n=5 of (Gamma(1/n)/Gamma(3/n))*(Gamma((n-1)/n)/Gamma((n-3)/n)): (1+sqrt(5))/2 = (Gamma(1/5)/Gamma(3/5))*(Gamma(4/5)/Gamma(2/5)). - _Bruno Berselli_, Dec 14 2012

%C Also decimal expansion of the only number x>1 such that (x^x)^(x^x)= (x^(x^x))^x = x^((x^x)^x). - _Jaroslav Krizek_, Feb 01 2014

%C For n>=1, round(phi^prime(n)) == 1 (mod prime(n)) and, for n>=3, round(phi^prime(n)) == 1 (mod 2*prime(n)). - _Vladimir Shevelev_, Mar 21 2014

%D Mohammad K. Azarian, Problem 123, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3, Fall 1998, p. 176. Solution published in Vol. 12, No. 1, Winter 2000, pp. 61-62.

%D R. A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific, River Edge NJ 1997.

%D S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.2.

%D M. Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi:The Golden Ratio", Chapter 8, Simon & Schuster NY 1961.

%D M. Gardner, Weird Water and Fuzzy Logic: More Notes of a Fringe Watcher, "The Cult of the Golden Ratio", Chapter 9, Prometheus Books, 1996, pages 90-97. [From _William Rex Marshall_, Aug 27 2008]

%D H. E. Huntley, The Divine Proportion, Dover NY 1970.

%D L. B. W. Jolley, The summation of series, Dover (1961).

%D M. Livio, The Golden Ratio, Broadway Books, NY, 2002. [see the review by G. Markowsky in the links field]

%D S. Olsen, The Golden Section, Walker & Co. NY 2006.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D H. Walser, The Golden Section, Math. Assoc. of Amer. Washington DC 2001.

%D C. J. Willard, Le nombre d'or, Magnard Paris 1987.

%H Robert G. Wilson v, <a href="/A001622/b001622.txt">Table of n, a(n) for n = 1..100000</a>

%H John Baez, <a href="http://math.ucr.edu/home/baez/week203.html">This week's finds in mathematical physics, Week 203</a>

%H John Baez, <a href="http://math.ucr.edu/home/baez/numbers/">The Rankin Lectures 2008, My Favorite Numbers: 5</a>. [<a href="http://www.youtube.com/watch?v=2oPGmxDua2U">video</a>]

%H M. Berg, <a href="http://www.fq.math.ca/Scanned/4-2/berg.pdf">Phi, the golden ratio (to 4599 decimal places) and Fibonacci numbers</a>, Fib. Quart., 4 (1961), 157-162.

%H T. Eveilleau, <a href="http://perso.orange.fr/therese.eveilleau/pages/truc_mat/textes/rectangle_dor.htm">Le nombre d'or</a> (in French)

%H Gutenberg Project, <a href="http://www.gutenberg.org/etext/633">The golden ratio to 20000 places</a>

%H ICON Project, <a href="http://www.cs.arizona.edu/icon/oddsends/phi.htm">The golden ratio to 50000 places</a>

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/">Fibonacci numbers and the golden section</a>

%H S. Litsyn and V. Shevelev, <a href="http://dx.doi.org/10.1142/S1793042105000339">Irrational Factors Satisfying the Little Fermat Theorem</a>, International Journal of Number Theory, vol.1, no.4 (2005), 499-512.

%H G. Markowsky, <a href="http://www.umcs.maine.edu/~markov/GoldenRatio.pdf">Misconceptions About the Golden Ratio</a>, College Mathematics Journal, 23:1 (January 1992), 2-19.

%H G. Markowsky, <a href="http://www.ams.org/notices/200503/rev-markowsky.pdf">Book review: The Golden Ratio</a>, Notices of the AMS, 52:3 (March 2005), 344-347.

%H J. C. Michel, <a href="http://jc.michel.free.fr/nombre_d_or.php">Le nombre d'or</a>

%H J. J. O'Connor & E.F.Robertson, <a href="http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Golden_ratio.html">The Golden ratio</a>

%H Simon Plouffe, Plouffe's Inverter, <a href="http://www.plouffe.fr/simon/constants/golden.txt">The golden ratio to 10 million digits</a>

%H Simon Plouffe, <a href="http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap46.html">The golden ratio:(1+sqrt(5))/2 to 20000 places</a>

%H F. Richman, Fibonacci sequence with multiprecision Java, <a href="http://math.fau.edu/Richman/fibjava.htm">Successive approximations to phi from ratios of consecutive Fibonacci numbers</a>

%H _Herman P. Robinson_, <a href="/A257574/a257574.pdf">The CSR Function</a>, Popular Computing (Calabasas, CA), Vol. 4 (No. 35, Feb 1976), pages PC35-3 to PC35-4. Annotated and scanned copy.

%H E. F. Schubert, <a href="http://www.rpi.edu/~schubert/Educational-resources/Fibonacci%20series.pdf">The Fibonacci series</a>

%H V. Shevelev, <a href="http://list.seqfan.eu/pipermail/seqfan/2014-March/012737.html">A property of n-bonacci constant</a>, Seqfan (Mar 23 2014)

%H J. Sondow, <a href="http://arxiv.org/abs/1106.4246">Evaluation of Tachiya's algebraic infinite products involving Fibonacci and Lucas numbers</a>, Diophantine Analysis and Related Fields 2011 - AIP Conference Proceedings, vol. 1385, pp. 97-100.

%H M. R. Watkins, <a href="http://www.maths.ex.ac.uk/~mwatkins/zeta/goldenmean.htm">The "Golden Mean" in number theory</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GoldenRatio.html">Golden Ratio</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SilverRatio.html">Silver Ratio</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Fibonaccin-StepNumber.html">Fibonacci n-Step Number</a>

%H Wikipedia, <a href="http://www.wikipedia.org/wiki/Golden_ratio">Golden ratio</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Kronecker-Weber_theorem">Kronecker Weber theorem</a>

%H Alexander J. Yee, <a href="http://www.numberworld.org/y-cruncher">y-cruncher - A Multi-Threaded Pi-Program</a>

%H Hugo Pfoertner, <a href="/A001622/a001622.txt">1 million digits of phi.</a> Computed using A. J. Yee's y-cruncher.

%F Equals Hypergeometric2F1([1/5, 4/5], [1/2], 3/4) = 2*cos((3/5)*arcsin(sqrt(3/4))). - _Artur Jasinski_, Oct 26 2008

%F From _Hieronymus Fischer_, Jan 02 2009: (Start)

%F The fractional part of phi^n equals phi^(-n), if n odd. For even n, the fractional part of phi^n is equal to 1-phi^(-n).

%F General formula: Provided x>1 satisfies x-x^(-1)=floor(x), where x=phi for this sequence, then:

%F for odd n: x^n-x^(-n)=floor(x^n), hence fract(x^n)=x^(-n),

%F for even n: x^n+x^(-n)=ceiling(x^n), hence fract(x^n)=1-x^(-n),

%F for all n>0: x^n + (-x)^(-n) = round(x^n).

%F x=phi is the minimal solution to x-x^(-1)=floor(x) (where floor(x)=1 in this case).

%F Other examples of constants x satisfying the relation x-x^(-1)=floor(x) include A014176 (the silver ratio: where floor(x)=2) and A098316 (the "bronze" ratio: where floor(x)=3). (End)

%F Equals 2*cos(Pi*1/5) = e^(i*Pi*1/5)+e^(-i*Pi*1/5). - _Eric Desbiaux_, Mar 19 2010

%F The solutions to x-x^(-1)=floor(x) are determined by x=1/2*(m+sqrt(m^2+4)), m>=1; x=phi for m=1. In terms of continued fractions the solutions can be described by x=[m;m,m,m,...], where m=1 for x=phi, and m=2 for the silver ratio A014176, and m=3 for the bronze ratio A098316. - _Hieronymus Fischer_, Oct 20 2010

%F Sum_{n>=1} x^n/n^2 = Pi^2/10-(log(2)*sin(Pi/10))^2 where x = 2*sin(Pi/10) = this constant here. [Jolley, eq 360d]

%F phi = 1+sum{k>=1}(-1)^(k-1)/(F(k)*F(k+1)), where F(n) is the n-th Fibonacci number (A000045). Proof. By Catalan's identity, F^2(n) - F(n-1)*F(n+1)=(-1)^(n-1). Therefore,(-1)^(n-1)/(F(n)*F(n+1))=F(n)/F(n+1)-F(n-1)/F(n). Thus sum{k=1..n}(-1)^(k-1)/(F(k)*F(k+1))=F(n)/F(n+1). If n goes to infinity, this tends to 1/phi=phi-1. - _Vladimir Shevelev_, Feb 22 2013

%F phi^n = (A000032(n) + A000045(n)*sqrt(5)) / 2. - _Thomas Ordowski_, Jun 09 2013

%F Let P(q) = prod(k>=1, 1 + q^(2*k-1) ) (the g.f. of A000700), then A001622 = exp(Pi/6) * P(exp(-5*Pi)) / P(exp(-Pi)). - _Stephen Beathard_, Oct 06 2013

%F phi = i^(2/5) + i^(-2/5) = ((i^(4/5))+1) / (i^(2/5)) = 2*(i^(2/5) - (sin(Pi/5))i) = 2*(i^(-2/5) + (sin(Pi/5))i). - _Jaroslav Krizek_, Feb 03 2014

%F phi = sqrt(2/(3 - sqrt(5))). This follows from the fact that ((1 + sqrt(5))^2)*(3 - sqrt(5)) = 8, so that ((1 + sqrt(5))/2)^2 = 2/(3 - sqrt(5)). - _Geoffrey Caveney_, Apr 19 2014

%F exp(asinh(cos(Pi/2-log(phi)*i))) = exp(asinh(sin(log(phi)*i))) = (sqrt(3) + i) / 2. - _Geoffrey Caveney_, Apr 23 2014

%F exp(asinh(cos(Pi/3))) = phi. - _Geoffrey Caveney_, Apr 23 2014

%F cos(Pi/3) + sqrt(1+cos(Pi/3)^2). - _Geoffrey Caveney_, Apr 23 2014

%F 2*phi = z^0 + z^1 - z^2 - z^3 + z^4, where z = exp(2*pi*i/5). See the Wikipedia Kronecker-Weber theorem link. _Jonathan Sondow_, Apr 24 2014

%F phi = 1/2 + sqrt(1 + (1/2)^2). - _Geoffrey Caveney_, Apr 25 2014

%F Phi is the limiting value of the iteration of x -> sqrt(1+x) on initial value a >= -1. - _Chayim Lowen_, Aug 30 2015

%F a(n) = -10*floor((Sqrt(5) + 1)/2*10^(-2 + n)) +

%F floor((Sqrt(5) + 1)/2*10^(-1 + n)) for n > 0. - _Mariusz Iwaniuk_, Apr 28 2017

%e 1.6180339887498948482045868343656381177203091798057628621...

%p Digits:=1000; evalf((1+sqrt(5))/2); # _Wesley Ivan Hurt_, Nov 01 2013

%t RealDigits[(1 + Sqrt[5])/2, 10, 130] (* _Stefan Steinerberger_, Apr 02 2006 *)

%t RealDigits[ Exp[ ArcSinh[1/2]], 10, 111][[1]] (* _Robert G. Wilson v_, Mar 01 2008 *)

%t RealDigits[GoldenRatio,10,120][[1]] (* _Harvey P. Dale_, Oct 28 2015 *)

%o (PARI) { default(realprecision, 20080); x=(1+sqrt(5))/2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b001622.txt", n, " ", d)); } \\ _Harry J. Smith_, Apr 19 2009

%o (PARI)

%o /* Digit-by-digit method : write it as 0.5+sqrt(1.25) and start at hundredths digit */

%o r=11; x=400; print(1); print(6);

%o for(dig=1, 110, {d=0; while((20*r+d)*d <= x, d++);

%o d--; /* while loop overshoots correct digit */

%o print(d); x=100*(x-(20*r+d)*d); r=10*r+d})

%o \\ _Michael B. Porter_, Oct 24 2009

%Y Cf. A000012, A000032, A000045, A006497, A080039, A104457, A188635, A192222, A192223, A145996, A139339, A197762, A002163, A094874, A134973.

%Y Cf. A102208, A102769, A131595. - _Stanislav Sykora_, Nov 30 2013

%K nonn,cons,nice,easy

%O 1,2

%A _N. J. A. Sloane_, Apr 30 1991

%E Additional links contributed by _Lekraj Beedassy_, Dec 23 2003

%E More terms from Gabriel Cunningham (gcasey(AT)mit.edu), Oct 24 2004

%E More terms from _Stefan Steinerberger_, Apr 02 2006

%E Broken URL to Project Gutenberg replaced by _Georg Fischer_, Jan 03 2009

%E Edited by _M. F. Hasler_, Feb 24 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 11:31 EST 2017. Contains 295876 sequences.