login
Nearest integer to 2*n*log(n).
(Formerly M2623 N1038)
1

%I M2623 N1038 #27 May 01 2024 09:00:34

%S 0,0,3,7,11,16,22,27,33,40,46,53,60,67,74,81,89,96,104,112,120,128,

%T 136,144,153,161,169,178,187,195,204,213,222,231,240,249,258,267,276,

%U 286,295,305,314,323,333,343,352,362,372,381,391,401,411,421,431,441

%N Nearest integer to 2*n*log(n).

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A001618/b001618.txt">Table of n, a(n) for n = 0..100000</a>

%H S. Kullback, M. Kupperman, and H. H. Ku, <a href="http://nistdigitalarchives.contentdm.oclc.org/cdm/ref/collection/p13011coll6/id/68866">An application of information theory to the analysis of contingency tables, with a table of 2n ln n, n=1(1)10,000</a>, J. Res. Nat. Bur. Standards Sect. B 66B (1962), pp. 217-243.

%t Join[{0}, Table[Floor[2*n*Log[n] + 1/2], {n, 60}]] (* _T. D. Noe_, Aug 09 2012 *)

%o (Magma) [0],[Round(2*n*Log(n)): n in [1..60]]; // _Vincenzo Librandi_, Oct 21 2011

%o (PARI) a(n)=round(2*n*log(n)) \\ _Charles R Greathouse IV_, Apr 17 2012

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_