login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001594 6^n + n^6. 8
1, 7, 100, 945, 5392, 23401, 93312, 397585, 1941760, 10609137, 61466176, 364568617, 2179768320, 13065520825, 78371693632, 470196375201, 2821126684672, 16926683582305, 101559990680640, 609359787056377 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (13,-63,161,-245,231,-133,43,-6).

FORMULA

G.f.: (1-6*x+72*x^2-75*x^3-1475*x^4-1776*x^5-334*x^6-7*x^7)/((1-x)^7*(1-6*x)). - Vincenzo Librandi, Aug 28 2014

MAPLE

seq(seq(k^n+n^k, k=6..6), n=0..19); # Zerinvary Lajos, Jun 29 2007

MATHEMATICA

Table[6^n + n^6, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 6 x + 72 x^2 - 75 x^3 - 1475 x^4 - 1776 x^5 - 334 x^6 - 7 x^7)/((1-x)^7 (1-6 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 28 2014 *)

PROG

(PARI) a(n)=6^n+n^6 \\ Charles R Greathouse IV, Feb 14 2011

(MAGMA) [6^n+n^6: n in [0..30]]; // Vincenzo Librandi, Oct 27 2011

(Sage) [6^n+n^6 for n in (0..30)] # Bruno Berselli, Aug 28 2014

CROSSREFS

Cf. sequences of the form k^n+n^k: A001580 (k=2), A001585 (k=3), A001589 (k=4), A001593 (k=5), this sequence (k=6), A001596 (k=7), A198401 (k=8), A185277 (k=9), A177068 (k=10), A177069 (k=11).

Sequence in context: A115066 A272957 A123616 * A052752 A182529 A165878

Adjacent sequences:  A001591 A001592 A001593 * A001595 A001596 A001597

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 30 00:42 EDT 2017. Contains 287304 sequences.