This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001584 A generalized Fibonacci sequence. (Formerly M0235 N0080) 1
 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 4, 7, 7, 8, 12, 12, 16, 21, 21, 31, 37, 38, 58, 65, 71, 106, 114, 135, 191, 201, 257, 341, 359, 485, 605, 652, 904, 1070, 1202, 1664, 1894, 2237, 3029, 3370, 4176, 5464, 6048, 7779, 9793, 10963, 14411, 17492, 20054, 26507, 31239, 36924, 48396 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 V. C. Harris and C. C. Styles, Generalized Fibonacci sequences associated with a generalized Pascal triangle, Fib. Quart., 4 (1966), 241-248. V. C. Harris and C. C. Styles, Generalized Fibonacci sequences associated with a generalized Pascal triangle and accompanying letter (annotated scanned copy) Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. FORMULA G.f.: (1+x+x^2-x^3-x^4-x^5)/(1-2*x^3+x^6-x^8). MAPLE A001584:=(z-1)*(z**2+z+1)**2/(z**4-z**3+1)/(z**4+z**3-1); # Simon Plouffe in his 1992 dissertation. PROG (PARI) Vec((1+x+x^2-x^3-x^4-x^5)/(1-2*x^3+x^6-x^8) + O(x^80)) \\ Michel Marcus, Sep 07 2017 CROSSREFS Cf. A017817. Sequence in context: A053282 A218084 A240046 * A180019 A274496 A112801 Adjacent sequences:  A001581 A001582 A001583 * A001585 A001586 A001587 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 19 21:33 EDT 2018. Contains 313896 sequences. (Running on oeis4.)