login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001577 An operational recurrence.
(Formerly M1718 N0681)
0
1, 1, 2, 6, 60, 2880, 2246400, 135862272000, 10376834265907200000, 77540115374348238323712000000000, 71611262431705169979126571320506685849600000000000000, 799595359352229378487949660335170674324575940302246074414582988800000000000000000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Considers recurrences u(n+1) = (d/dx) u_n(x)*u_{n-1}(x) and u(n+1) = x*(d/dx) u_n(x)*u_{n-1}(x). In latter, take u_0=1, u_1=x; setting x=1 gives sequence shown here.

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..12.

H. W. Gould, Operational recurrences involving Fibonacci numbers, Fib. Quart., 1 (No. 1, 1963), 30-33.

FORMULA

Product F_k^F_{n+1-k}, k=1..n, F = Fibonacci numbers.

MATHEMATICA

Table[Product[Fibonacci[k]^Fibonacci[n+1-k], {k, n}], {n, 12}] (* Harvey P. Dale, May 16 2012 *)

CROSSREFS

Sequence in context: A108640 A084971 A224883 * A156503 A077175 A139771

Adjacent sequences:  A001574 A001575 A001576 * A001578 A001579 A001580

KEYWORD

nice,easy,nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Harvey P. Dale, May 16 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 16:27 EST 2017. Contains 295003 sequences.