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By F. C. AULUCK

Communicated by H. N. V. TEMPERLEY
Received 10 January 1951

1. In this paper we find generating functions and asymptotic expressions for the
number of partitions of & positive integer % into two sets of positive integers satisfying

the conditions r $
n = Z ak+ Z bj’ (1)

k=1 j=
a1<a2$a3-\ £4a,, b1<b2<b3< ng ] (‘))
b, <d, J p

The set ‘b’ can be empty. Such partitions are considered by Temperley (1) in 2 forth-
coming paper on the roughness of crystal surfaces. We shall cousider them in more
_ detail and under different sets of conditions on the a's and b’s.
Type A. In this type we take b, = a,— 1. Every integer up to a, is taken at least once
B L in the set ‘a’ and every integer up to b, is taken at least once in the set ‘57, A typical
partition of 13 may be written as 1123321, If P(#) denotes the total nunber of such
partitions of n for all possible values of r, it can be easily verified that P(6) = 5,
P(10) = 19.

Type B. There are no costrictions on the a’s and b’s except those statedin (2). If
 Q(n) denotes the total number of partitions of n under these conditions, then it is
| easily found that Q(6) = 27, Q(10) = 209. :

Type C. In this type every integer up to a, is taken at least once in the set ‘a’, there
i being no such restriction on the set ‘b’. Denoting by R(n) the total number of such
! partitions of n we see that R(6) = 8, R(10) = 38.
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Fig. 1

We can depict these partitions by means of Ferrers graphs in which the number of
dots in the columns, as reckoned from the left, irst increase steadily, reach a maximum
and then decrease steadily. For example, the type B partition 2354211 of the number
18 can be depicted as in ¥ig. 1. In particular, the partitions of the type C can be denoted
by such graphs and & second type of oraphical representation which will be described
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in §4 and the equivalence of the two methods proved. Partitions of type B also have
a second type of graphical representation, as Temperley (1) has shown. Asymptotic
expressions enumerating the three types of partitions for large numbers, together with

recurrence formulae, will be obtained in the following sections.

2. In this section we consider partitions of the type A. If m is the maximum valye
of the a’s in any partition, then the number of such partitions will be the coefficient of

2™ in the expression
xém(mﬁ"l) xim(m—l)

(1-z)(1-2?)(1-2%) ... 1—2m) (1—z) (1 —22)...
Hence the generating function enumerating partitions of the type A is

© am?

fiw)= T (I—2)2(1—222.. (I—2" 12 (1—am)
Following MacMahon (2) we consider the product

(30252

=L+M (z+1)+N(z2+12)+...,
z z

{( +22) (1 +22%) (1 +225)...}

where L, M, N, ... are functions of « only. By changing z into z22 we get

1 1 I L l\
P L {2204 ¢ _ o=l Ml Z Nis24 =
L+ M|z +zx2)+1\(zx +z2x4)+ |1+ 1( +z)+ ( o)+

Comparing the coefficients of powers of z we obtain
M=Lx, N=Mz=La* oeto.
Thus the product in (4) becomes equal to

Lil+zx z-{-l +x4(22+l)+x9 z3-§-l + ...,
z 22 z3

- Putting z = — 1, we get an expression for L:

L={(1—:t:)(1—953)(1—.%5)...}2
1—-2x4 224 — 229 ..
SR fiE T o ORY,

- P(0,2)
_{1-z)(1-a%)(1-a%)..}

l;ll (1 _x2-n— )(1 __xn)

@

= IT(1-a*)

n=1

(I=2m=Y);

.
"q‘ —
.

(3)

(4)

\v/

(6

Thus by first changing z into zz and then 2?2 into z in equation (4) we finally obtain

(1+§) {(1+2x) (1 +22%) (1 +22%) ...} {(l +§) (1+'—Z—2) (1 +x?3) }

1 1
l+x5(zx*+—‘)+x2(22x+—2—)+...
s zact 2%

(1—2)(1—2)(1—a?%...

e L

s O SrE———— .

i

ra—— e

Using the well-.
(1+22) (1 +22%)
we get from (7),

1

the indices of th
By puttingz = ¢
with respect to

28

[Pl
+(1_

il
where the integer
function for P(n)

It is_evideﬁt that

which gives a forr
given a table for v

To obtain an as;
Now by the Hardy

Substituting it in (

P(n) = Z(-)
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1. If m is the maximum value
itions will be the coefficient of

Am{m—1)
2y (l—am1y”
f the type A is

Fa—z) e

{4)

- into z2? we get

1)+\(Zz+£§)+} (3

(I

(4) we finally obtain
+Z) (1 +£3) }
Ll z

—_ {
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Using the well-known result
(1422) (1 +22%) (1 +22%) ... = 14 lz—xx+(l—;)2ﬁ—x‘-')+(l—x)(li;xxz)(l—ﬁ)+"" (8)
we get from (7), by equating the terms independent of z,
5 x2 x6 . 12
1+t S e e
¥ i 0
+{1 —z (=2 (=) T (1—2r (1P (=) }
1
T () (-a)(1-2%)... (9)

the indices of the numerators in the first series being twice the triangular numbers.
By putting z = ¢’ and e~ in (8), multiplying the two expressions and then integrating
with respect to 6 between 0 and 27 we obtain

1 I o + e 2”ﬁ (1+2z™cos 6 + 22m) dO
T2 T=era - " ), So U
27 $
o s
dmad [T (1—2n)” ° 3
1 :
9 in . =
=— f 1+xc§):3(90+x300(:)sso€0 xscc:)s'z?m) d0
ﬂ]’[(l—x")JO \ Cos COS
1
l—z+a3—a8 4210,

T (l—z)(I-2%)(1-29).." _ i
where the integers 1, 3, 6, 10, ... are the triangular numbers. Hence the generating
function for P(n) is T—a34ab—gl0

- fla)=— ey (11)
(1—z)(1-2%) (1—2%) ...
It is evident that if p(n) is the number of unrestricted partitions of n, then
P(n) = p(n— 1)—p(n—3)+p(n—6)—p(n—10)...
- = NEan = drie 2 4, (12)

rir+1)<2n

which gives a formula for calculating P(n) for small values of #. In the appendix is
viven a table for values of P(n) up to n = 20. '

To obtain an asymptotic expression for P(n) we again use the formula (12) for P(n).
Now by the Hardy-Ramanujan-Rademacher asymptotic formula for p(n) we have

1 . .
Plm) = g eV (140w}, (13)
Nubstituting it in (12) we get
' 1 1
8 e | 7V ({En) (n=rr+ 1) e L
Pl = = e e 3 <”O({n—%r<r+1)}*)’ :
T o el T T - G - .;.1
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We split the sum into two parts (1) 7 <n?, (ii)
P(n) with the expression

(-]

T bk

r=1 4n

For r <ni the corresponding terms differ by O(
both series contribute

r2n* We compare the expression for

e™Vi(in) e=TV{@En~i }r(r+1)'

n~terV@m) The remaining terms of
O(en\/(gn)—A'nl),
where 4 is a constant independent for n. Hence
@

1 =
Pn) = & Q/3 envn) 3 {—pa e—im’in‘iﬂr+l)+0(n—! eﬂ\/(in))_

r=1

(14)

@
We now evaluate the series > (= )me—mmiDa
m=0

for small 2:

© @

— Y g—m(m+Dx _ =2m2m+)x __ —2m+1)(2m+2) x

P PR b Ll = e e }
m=0 m=0
e

= mz_;oe—(2m+l)2x{e(2m+l)z iy e—(2m+l)z}

2x

ﬁMs

w
(2m + 1) e—(2m+1)2x+0(x2) 3 m2e—m*x
0 m=0

= x| we*rdx 4+ Oxt)

>

: o 1
Hence lim 3 (—)me-mmina _

>0 m=0

Using this result in (14) we obtain the asymptotic expression

1
s 8n

V@) 1
3¢ (15)

3. We now consider partitions of the type B. The generating function®of these
partitions is ®

xm
9@ = T 4 — 2R (1—2?) __(1—2m1)2 (] —zm)' 30,
The (m+1)th term of this series enumerates partitions into unrestricted parts not
greater than m, but at least one summand being equal to m, followed by unrestricted
parts less than or equal to (m — 1). We have identically

2x —? 222 — g s P 1 -
+(1—x)2+(1—x)2(1—x2)2+"‘=(1—x)2(1—x2)2(1—x3)2...’ b2
which gives :
1 1 1 54 gy
9(x) = E(l-x)2(1—x2)2(1—x3)2..._5{1+(1—x)2+(1—x)2-(1—x2)2+‘“}'
Using the relation _
3 =gt s L G (18)
(1—22) (1 —za?) (1 —223) ... l—z (I-2)(1—2%) "

e e e —————

R T U RN O

e

we find, by the sa
that .
1+ (1—_

where G = ﬁ (1=

n=]1

where

the above integra] :

e

Thus we obtain the

which gives
n
and thus we obtain

P(n) -

and

In the appendix we
To obtain the asym
for P(n) and p(n)in (2

since all the terms are 1
of €, we finally obtain

Q
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compare the expression for

.. The remaining terms of

! 0(71_1 en\/(i'n))_ (14)
.
m+2).7:}
.m-:-l)z}
0(1_)%): me e—m*z
m=0
=zion
(15)

nerating function of these

1—am)’ ok,

1to unrestricted parts not
.. followed by unrestricted

1

TN
=2 (-2t }

(17)
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we find, by the same process that was used in derivi ing equation (10) from equation (8),
that z2 x4 1 por d6
1+ + i = —
1—x)2 1 —72)2 — 2\2 <2 ©
Reml =S ) : ”J 1'[(1—2x’cosﬁ+x2’)
0 r=
A _ %4(0, x*)fh sin $0d6.
- 2nGR Jy 9,(16, 1)’
where G = [T (1—2"). Using the known result (3)
n=1
90) 1 ;
T @+4m=1§,5 3 a,,sinmz, (19)
where = § (= )rqrrm,
r=1
the above integral reduces to
27 19;(0) 2 X
o 5,(30) sin $0d0 = 27r+4341J.0 sin? }6d0
= 27(1 4+ 2a,)
= 27142 § (._)mxim(m-f-l)}.
m=1
Thus we obtain the expression for g(z),
SR, bont iy e e 10 S O ) g
" = (e s P = S Lo e
which gives 2'0 P(n)x" = (l—zx—22+28+27...) % Q(m) 2™,
n=0 m=0
and thus we obtain .
Pn) = Q(n)—Q(n—1)-Q(n—2)+Q(n—5)+ Q(n—"1)...
—Qn)—i—Z Ve {Q(n — 3k(3k — 1)) + Q(n — }k( (3k+ 1))}, (21)
and Q) = £ Pom)p(n- m)T (22)

In the appendix we give a table giving values of Q(n Jupton = 20.
To obtain the asymptotic formula for Q(n (n) we substitute the asymptotic formulae
tor P(n) and p(n) in (22) and deduce

Qn)~%

7V § {(n~m)i+mi} 23).
96(n—mym* ’ A
“nce all the terms are positive. Puttingm = 4n + £ and expanding the indices in powers
- £, we finally obtain

1 4 it D
n ~——e‘/‘§")f e 3tt dE —
Q( ) 96”2 S5 g

e2n\/(§n)_

1
8.3int Py

1. We proceed now to the consideration of the partitions of the type C. There is an
itresting way of looking at these partitions. Suppose that we want to place % coins in
-iane in continuous rows touching each other such that every coin (except those in the
““trow) lies in the groove tormed by two other coins in the row below it. For example,
PSP 47, 4 : 44
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thirteen coins can be arranged il a pattern shown in F ig. 2
first row, then there may

number in the second row is (r—k)

Fig. 2

Thus if R(n, r) denotes the number of ways in which r coins can be arranged in the above
type of pattern with  coins in the first row, then we have

R(n,r) = R(n-—r,r—l)+2R(1z—r,r—-2)+3R(n—r,r—3)+...

+(r=1)Rn—r,1)+45. (25)
If B(n, ) is the coefficient of z» n %,(x) we obtain
ho(z) = 2r{h,_ (x) + 2h,_o()+ ...+ (r=1) by () + 1}.
Thus hy(z) = 2,
ho(@) = 22{hy (x) + 1},
hy(x) = a®{hy(x) + 2hy(x) + 13,
Denoting § h.(x) by h(z), we get by adding the above equations
r=1
x x? a
Iz) = Ty =z (@) + who(x) + 2%hy(z) + ...},
But 3
3
hy(x) + 2hy(@) + 22hy(z) + ... = ; _xxz o+ (T—_g—c-x?)z{hl(x) +2%hy(x) + wihg(z) + ...},
We obtain, by continuing this process,
x o 8 =
N et ot 26
ety —aP(1=2%) " (I —ap (I =2ty " i

This proves the equivalence of the two definitions because each term in (26) can be
interpreted in the way of the definition of partitions of the type C given in § 1. Temper-
ley (1) has demonstrated the same type of correspondence between partitions of the
type B and arrangements of coins in rows forming a square lattice.

From the equations (8) and (18) we obtain the following results:
LJ’?" (1+ei)(1 +2e7Y) (1 +2%-%) a6
2o (L—ae)(1—a%i)(1 —x3ed) ..
z i

(l—x)2+<1—x)2(1“—52“)2

o i
TS Ty oy g R

2. If there are  coins in the
bbe—1, 73, =3, ..., 1, 0 coins in the second row. If the
» the two rows can be arranged in % distinct ways.

E—

e A

e

e

e e e

and

ety
the indices of the 1

indices of the nume
ence of the two inte

Since

where @ has been d¢

|

[

N
~)

]
QAR

=

n

1
From this expression 1

where & and m take all

and p,(m) denotes the
exactly k positive integ
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have

r—3)+...

+(r=1)R(n—=r,1)+8]. (25 |

1) hy(2) + 1}

.1},9'_ _ '

ve equations

-2%hy(x) + ...

7)o+ @Ry (@) + athg(z) + ... [
!

=t
ause each term in (26) can be
ietype Cgivenin § 1. Temper- |
nee between partitions of the |
are lattice,
ne results:

)

~~db
¥.os

(26) ,I

:’;._-‘\“ —x3)2+""

—M
. Some new types of partitions 685
1 [P (1+e) (1 + ze—10) (1 +22%%), .
itk 277_{0 ?l_—xgew) (1—2%%7) (1 —28%0) __ o
2 x5 Z
BT A s gy (1—2)2 (12 (I —gape T -

o

27
h(z) = g—rfo A |

m=0

L - xmgt
(1 _xmrx‘ew)d : (27)

Since - 192@(9, &) = 2G cos 46 F{ (1+ 2™ cos 6 + x2n),
n=1]

where G has been defined earlier. We can put h(z) in the form

=BT eb09,(30 by
") =26 ), G (g
27

ag

@ .
et 3 21’ oog (4 31

L de
i1

- x2me2i0)
m=1

0

[‘2# ©
z

JO n=0

®
1

—x2

x

276G

= a3(n%+n) (e(n+l) ® 4 e—-m:ﬁ‘)

2 4
gz, %

(1—a?) (1 —z%)

..
27

Z 2(2n+1) e—2nif
0 n=0

&
1

" G

2

210 4 _ !

(l—xz)(l—aﬂ_)

—2?

e4""9+...}d0

© n(2n+3)
x
e

n=

(1-2%) (1 —at) . (1=z2m)

«©

QIr

s, S

2Zn+DE@n+1)

T (28)
= e ,,:0(l—x2)(l—z")...(l—x2")
nI=—I1 (I. i )

From this expression for A(x) we obtain a formula, for R(n):

L R(n) = 3 p(n—2k2

m, k

~k—2m— 1) pr(m), (29)

where £ and m take all positive integral values consistent with the relation
2B+ k+2mgn—~ 1

and p,(m) denotes the number of ways

txactly £ positive integers. We ¢

£(n)

in which m can be represented as the sum of

an also put R(n) in the alternative form
2 pn—kE— 2k 9y 1) gp.(m),
m, ki

(30)

44-2
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where ¢,(m) denotes the number of ways in which m can be represented as the sum of
exactly & different positive integers. From (29) and (30) it follows that

Zp(n—2m®—3m—1)p(m)< R(n)< X p(n—2m—4)q(m).
k3 m
This is a very weak inequality and leads to the result that for n— oo

mJ§<ntlog R(n) < /3. _ (31)

The author wishes to express his appreciation to Mr H. N. V. Temperley on whose
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University authorities and the Education Department of the Government of India for
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ISy APPENDIX (523 |72 ¢
| n P(n) i Qn) R(n)
1 N 1
¥ N 2 \:\
3 1 4 2
4 2 8 3
5 3 15 5
6 5 27 8
7 7 47 12
8 10 79 18
9 14 | 130 26
10 19 209 38 :
11 26 , 330 53
12 35 | 512 75 i
13 47 784 103
14 62 | 1,183 142
15 82 ; 1,765 192
16 107 2,604 260
17 139 3,804 346
18 179 | 5,504 . 461 -
19 230 ! 7,898 —e05— 60)
20 , 293 f 11,240

i - d 0{7
\
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