

A001420


Number of fixed 2dimensional triangularcelled animals with n cells (niamonds, polyiamonds) in the 2dimensional hexagonal lattice.
(Formerly M0806 N0305)


3



2, 3, 6, 14, 36, 94, 250, 675, 1838, 5053, 14016, 39169, 110194, 311751, 886160, 2529260, 7244862, 20818498, 59994514, 173338962, 501994070, 1456891547, 4236446214, 12341035217, 36009329450, 105229462401, 307942754342, 902338712971, 2647263986022, 7775314024683, 22861250676074, 67284446545605
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The hexagonal lattice is the familiar 2dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.


REFERENCES

G. Aleksandrowicz and G. Barequet, Counting ddimensional polycubes and nonrectangular planar polyominoes, Int. J. of Computational Geometry and Applications, 19 (2009), 215229.
A. J. Guttmann, ed., Polygons, Polyominoes and Polycubes, Springer, 2009, p. 479. (Table 16.11 has 75 terms of this sequence.) [From Robert A. Russell, Nov 05 2010]
W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
D. H. Redelmeier, personal communication.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..32.
G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2


CROSSREFS

Cf. A000577, A001168, A006534, A030223, A030224.
Sequence in context: A002995 A093467 A080408 * A049339 A157100 A081293
Adjacent sequences: A001417 A001418 A001419 * A001421 A001422 A001423


KEYWORD

nonn,hard,nice


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms from Brendan Owen (brendan_owen(AT)yahoo.com), Dec 15, 2001
a(28) from Joseph Myers, Sep 24 2002
a(29)a(31) from the Aleksandrowicz and Barequet paper (N. J. A. Sloane, Jul 09 2009)
Slightly edited by Gill Barequet, May 24 2011
a(32) from Paul Church, Oct 06 2011


STATUS

approved



