This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001412 Number of n-step self-avoiding walks on cubic lattice.
(Formerly M4202 N1754)

%I M4202 N1754

%S 1,6,30,150,726,3534,16926,81390,387966,1853886,8809878,41934150,

%T 198842742,943974510,4468911678,21175146054,100121875974,473730252102,

%U 2237723684094,10576033219614,49917327838734,235710090502158,1111781983442406,5245988215191414,24730180885580790,116618841700433358,549493796867100942,2589874864863200574,12198184788179866902,57466913094951837030,270569905525454674614

%N Number of n-step self-avoiding walks on cubic lattice.

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 331-339.

%D M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.

%D A. J. Guttmann, On the critical behavior of self-avoiding walks, J. Phys. A 20 (1987), 1839-1854.

%D B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted random-walk model of a macromolecule, J. Chem. Phys., 34 (1961), 1531-1537.

%D B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.

%D D. S. McKenzie and C. Domb, The second osmotic virial coefficient of athermal polymer solutions, Proceedings of the Physical Society, 92 (1967) 632-649.

%D A. M. Nemirovsky et al., Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D M. F. Sykes, Some counting theorems in the theory of the Ising problem and the excluded volume problem, J. Math. Phys., 2 (1961), 52-62.

%D M. F. Sykes, Self-avoiding walks on the simple cubic lattice, J. Chem. Phys., 39 (1963), 410-411.

%D M. F. Sykes et al., The asymptotic behavior of selfavoiding walks and returns on a lattice, J. Phys. A 5 (1972), 653-660.

%H R. D. Schram, G. T. Barkema, R. H. Bisseling, <a href="/A001412/b001412.txt">Table of n, a(n) for n = 0..36</a>

%H N. Clisby, R. Liang and G. Slade <a href="http://dx.doi.org/10.1088/1751-8113/40/36/003">Self-avoiding walk enumeration via the lace expansion</a> J. Phys. A: Math. Theor. vol. 40 (2007) p 10973-11017, Table A5 for n<=30.

%H S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/cnntv/cnntv.html">Self-Avoiding-Walk Connective Constants</a>

%H D. Randall, <a href="http://citeseer.ist.psu.edu/randall94counting.html">Counting in Lattices: Combinatorial Problems from Statistical Mechanics</a>, PhD Thesis.

%H Raoul D. Schram, Gerard T. Barkema, Rob H. Bisseling, <a href="http://arxiv.org/abs/1104.2184">Exact enumeration of self-avoiding walks</a>, Apr 12, 2011 [Jonathan Vos Post, Apr 13 2011]

%Y Cf. A002902, A078717, A001411, A001413.

%K nonn,walk,nice

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 21:20 EST 2016. Contains 278694 sequences.