This site is supported by donations to The OEIS Foundation.



Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001412 Number of n-step self-avoiding walks on cubic lattice.
(Formerly M4202 N1754)

%I M4202 N1754

%S 1,6,30,150,726,3534,16926,81390,387966,1853886,8809878,41934150,

%T 198842742,943974510,4468911678,21175146054,100121875974,473730252102,

%U 2237723684094,10576033219614,49917327838734,235710090502158,1111781983442406,5245988215191414,24730180885580790,116618841700433358,549493796867100942,2589874864863200574,12198184788179866902,57466913094951837030,270569905525454674614

%N Number of n-step self-avoiding walks on cubic lattice.

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 331-339.

%D M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.

%D A. J. Guttmann, On the critical behavior of self-avoiding walks, J. Phys. A 20 (1987), 1839-1854.

%D B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted random-walk model of a macromolecule, J. Chem. Phys., 34 (1961), 1531-1537.

%D B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.

%D D. S. McKenzie and C. Domb, The second osmotic virial coefficient of athermal polymer solutions, Proceedings of the Physical Society, 92 (1967) 632-649.

%D A. M. Nemirovsky et al., Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D M. F. Sykes, Some counting theorems in the theory of the Ising problem and the excluded volume problem, J. Math. Phys., 2 (1961), 52-62.

%D M. F. Sykes, Self-avoiding walks on the simple cubic lattice, J. Chem. Phys., 39 (1963), 410-411.

%D M. F. Sykes et al., The asymptotic behavior of selfavoiding walks and returns on a lattice, J. Phys. A 5 (1972), 653-660.

%H R. D. Schram, G. T. Barkema, R. H. Bisseling, <a href="/A001412/b001412.txt">Table of n, a(n) for n = 0..36</a>

%H N. Clisby, R. Liang and G. Slade <a href="http://dx.doi.org/10.1088/1751-8113/40/36/003">Self-avoiding walk enumeration via the lace expansion</a> J. Phys. A: Math. Theor. vol. 40 (2007) p 10973-11017, Table A5 for n<=30.

%H S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/cnntv/cnntv.html">Self-Avoiding-Walk Connective Constants</a>

%H D. Randall, <a href="http://citeseer.ist.psu.edu/randall94counting.html">Counting in Lattices: Combinatorial Problems from Statistical Mechanics</a>, PhD Thesis.

%H Raoul D. Schram, Gerard T. Barkema, Rob H. Bisseling, <a href="http://arxiv.org/abs/1104.2184">Exact enumeration of self-avoiding walks</a>, Apr 12, 2011 [Jonathan Vos Post, Apr 13, 2011]

%Y Cf. A002902, A078717, A001411, A001413.

%K nonn,walk,nice

%O 0,2

%A _N. J. A. Sloane_.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 22:24 EST 2014. Contains 252289 sequences.