

A001367


Solution to f(2) = 1, f(n) = sqrt(n) f(sqrt(n)) + n at values n = 2^2^i.


1



1, 6, 40, 896, 294912, 23622320128, 119903836479112085504, 2552117751907038475975309555738261585920, 984232758517187661100353372573847216752794869657944794335389464067261601939456
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..11


MAPLE

f:= proc(n) f(n):= `if`(n=2, 1, sqrt(n) *f(sqrt(n)) +n) end:
a:= n> f(2^(2^n)):
seq (a(n), n=0..10); # Alois P. Heinz, Jun 27 2012


MATHEMATICA

f[ 2 ] := 1; f[ n_ ] := Sqrt[ n ]*f[ Sqrt[ n ] ] + n; Table[ f[ 2^2^i ], {i, 0, 7} ]


CROSSREFS

Sequence in context: A281262 A186196 A196478 * A096671 A196712 A086803
Adjacent sequences: A001364 A001365 A001366 * A001368 A001369 A001370


KEYWORD

nonn


AUTHOR

Alexander Sorg (sorg(AT)bu.edu)


STATUS

approved



