login
A001367
Solution to f(2) = 1, f(n) = sqrt(n) f(sqrt(n)) + n at values n = 2^2^i.
1
1, 6, 40, 896, 294912, 23622320128, 119903836479112085504, 2552117751907038475975309555738261585920, 984232758517187661100353372573847216752794869657944794335389464067261601939456
OFFSET
0,2
LINKS
FORMULA
a(n) = 2^(2^n-1)*(2*n+1). - Christian Krause, Sep 27 2024
MAPLE
f:= proc(n) f(n):= `if`(n=2, 1, sqrt(n) *f(sqrt(n)) +n) end:
a:= n-> f(2^(2^n)):
seq(a(n), n=0..10); # Alois P. Heinz, Jun 27 2012
MATHEMATICA
f[ 2 ] := 1; f[ n_ ] := Sqrt[ n ]*f[ Sqrt[ n ] ] + n; Table[ f[ 2^2^i ], {i, 0, 7} ]
CROSSREFS
Sequence in context: A281262 A186196 A196478 * A096671 A196712 A086803
KEYWORD
nonn
AUTHOR
Alexander Sorg (sorg(AT)bu.edu)
STATUS
approved