login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001332 Bernoulli(2*n) * (2*n + 1)!.
(Formerly M3710 N1516)
5
1, 1, -4, 120, -12096, 3024000, -1576143360, 1525620096000, -2522591034163200, 6686974460694528000, -27033456071346536448000, 160078872315904478576640000, -1342964491649083924630732800000, 15522270327163593186886877184000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

G. S. Kazandzidis: On a Matrix and a Class of Polynomials. Bulletin de la Societe Mathematique de Grece. Nouvelle Serie - Vol. 6 I, Fasc. 1, (1965), pp. 105 - 126.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..50

Index entries for sequences related to Bernoulli numbers.

FORMULA

Lacunary e.g.f: x / (exp(x) - 1) + x / 2 = Sum_{k>=0} a(k) * x^(2*k) / ((2*k)! * (2*k + 1)!). - Michael Somos, Mar 29 2011

a(n) = determinant of the 2n X 2n matrix ( d(i,j) = binomial( i+1, i-j+2) if j < i+2 else 0 ). - Michael Somos, Oct 08 2003

a(n) = A129814(2*n). - Michael Somos, Mar 29 2011

MATHEMATICA

Table[BernoulliB[2*n]*(2*n + 1)!, {n, 0, 20}] (* T. D. Noe, Jun 28 2012 *)

PROG

(PARI) {a(n) = if( n<0, 0, (2*n + 1)! * bernfrac( 2*n))} /* Michael Somos, Oct 08 2003 */

CROSSREFS

Cf. A129814.

Sequence in context: A002702 A068204 A203033 * A071304 A213957 A006607

Adjacent sequences:  A001329 A001330 A001331 * A001333 A001334 A001335

KEYWORD

sign,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 00:02 EST 2019. Contains 319184 sequences. (Running on oeis4.)