login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001312 Number of ways of making change for n cents using coins of 1, 2, 5, 10, 50, 100 cents. 6
1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 64, 70, 76, 82, 88, 98, 104, 114, 120, 130, 140, 150, 160, 170, 180, 195, 205, 220, 230, 245, 260, 275, 290, 305, 320, 342, 357, 379, 394, 416, 438, 460, 482, 504, 526 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of partitions of n into parts 1, 2, 5, 10, 50, and 100. - Joerg Arndt, Sep 05 2014

REFERENCES

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.

G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

H. Bottomley, Initial terms of A000008, A001301, A001302, A001312, A001313

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 181

Index entries for linear recurrences with constant coefficients, order 168.

Index entries for sequences related to making change.

FORMULA

G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^50)*(1-x^100)).

EXAMPLE

1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + 8*x^9 + 11*x^10 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[1/((1 - x)(1 - x^2)(1 - x^5)(1 - x^10)(1 - x^50)(1 - x^100)), {x, 0, n}]

Table[Length[FrobeniusSolve[{1, 2, 5, 10, 50, 100}, n]], {n, 0, 60}] (* Harvey P. Dale, Dec 29 2017 *)

CROSSREFS

Sequence in context: A029015 A000008 * A182086 A001301 A001302 A001313

Adjacent sequences:  A001309 A001310 A001311 * A001313 A001314 A001315

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 19:25 EST 2018. Contains 317149 sequences. (Running on oeis4.)