The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001305 Expansion of 1/((1-x)^2*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^20)). 1
 1, 2, 4, 6, 9, 13, 18, 24, 31, 39, 50, 62, 77, 93, 112, 134, 159, 187, 218, 252, 293, 337, 388, 442, 503, 571, 646, 728, 817, 913, 1022, 1138, 1267, 1403, 1552, 1714, 1889, 2077, 2278, 2492, 2728, 2977, 3248, 3532, 3838, 4166, 4516, 4888, 5282, 5698, 6148 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 201 Index entries for linear recurrences with constant coefficients, signature (2, 0, -2, 1, 1, -2, 0, 2, -1, 1, -2, 0, 2, -1, -1, 2, 0, -2, 1, 1, -2, 0, 2, -1, -1, 2, 0, -2, 1, -1, 2, 0, -2, 1, 1, -2, 0, 2, -1). FORMULA G.f.: 1/((1-x)^2*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^20)). MATHEMATICA CoefficientList[Series[1/((1-x)^2*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^20)), {x, 0, 50}], x] (* Vincenzo Librandi, Feb 24 2012 *) PROG (Maxima) a(n):=block([f:divide((1-z^20)^5, (1-z)^2*(1-z^2)*(1-z^5)*(1-z^10), z)[1]], return(sum(binomial(k+5, 5)*coeff(f, z, n-20*k), k, max(0, ceiling((n-81)/20)), floor(n/20)))); /* Tani Akinari, May 12 2014 */ CROSSREFS Sequence in context: A177239 A001304 A000064 * A088575 A177189 A026906 Adjacent sequences:  A001302 A001303 A001304 * A001306 A001307 A001308 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 19:52 EDT 2020. Contains 336256 sequences. (Running on oeis4.)