%I #13 Jan 29 2022 12:16:56
%S 2576,1288,1288,616,672,616,280,336,336,280,120,160,176,160,120,48,72,
%T 88,88,72,48,16,32,40,48,40,32,16,0,16,16,24,24,16,16,0,0,0,16,0,24,0,
%U 16,0,0
%N Triangle in which k-th number (0<=k<=n) in n-th row (0<=n) is number of dodecads in Golay code G_24 containing k given points and missing n-k given points.
%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 278.
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 68.
%H J. H. Conway and N. J. A. Sloane, <a href="https://www.researchgate.net/publication/3077646_Orbit_and_Coset_Analysis_of_the_Golay_and_Related_Codes">Orbit and coset analysis of the Golay and related codes</a>, IEEE Trans. Inform. Theory, 36 (1990), 1038-1050.
%e Triangle begins:
%e 2576;
%e 1288, 1288;
%e 616, 672, 616;
%e 280, 336, 336, 280;
%e 120, 160, 176, 160, 120;
%e ...
%K nonn,tabl,fini,full,nice
%O 0,1
%A _N. J. A. Sloane_