%I
%S 4,9,25,49,121,169,289,361,529,841,961,1369,1681,1849,2209,2809,3481,
%T 3721,4489,5041,5329,6241,6889,7921,9409,10201,10609,11449,11881,
%U 12769,16129,17161,18769,19321,22201,22801,24649,26569,27889,29929,32041,32761,36481
%N Squares of primes.
%C Also 4, together with numbers n such that sum(dn,(1)^d) = A048272(n) = 3  _Benoit Cloitre_, Apr 14 2002
%C Also, all solutions to the equation sigma(x)+phi(x)=2x+1.  Farideh Firoozbakht, Feb 02 2005
%C Unique numbers having 3 divisors (1, their square root, themselves).  _Alexandre Wajnberg_, Jan 15 2006
%C Smallest (or first) new number deleted at the nth step in an Eratosthenes sieve.  _Lekraj Beedassy_, Aug 17 2006
%C Subsequence of semiprimes A001358.  _Lekraj Beedassy_, Sep 06 2006
%C A000005(a(n)^(k1)) = A005408(k) for all k>0.  _Reinhard Zumkeller_, Mar 04 2007
%C Integers having only 1 factor other than 1 and the number itself. Every number in the sequence is a multiple of 1 factor other than 1 and the number itself. 4 : 2 is the only factor other than 1 and 4; 9 : 3 is the only factor other than 1 and 9; and so on.  Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 23 2007
%C The nth number with p divisors is equal to the nth prime raised to power p1, where p is prime.  _Omar E. Pol_, May 06 2008
%C There are 2 Abelian groups of order p^2 (C_p^2 and C_p x C_p) and no nonAbelian group.  _Franz Vrabec_, Sep 11 2008
%C For n > 2: (a(n) + 17) mod 12 = 6.  _Reinhard Zumkeller_, May 12 2010
%C A192134(A095874(a(n))) = A005722(n) + 1.  _Reinhard Zumkeller_, Jun 26 2011
%C For n > 2: a(n) = 1 (mod 24).  Moshe Levin, Dec 07 2011
%C A211110(a(n)) = 2.  _Reinhard Zumkeller_, Apr 02 2012
%C Solutions of the differential equation n'=2*sqrt(n), where n' is the arithmetic derivative of n.  _Paolo P. Lava_, Apr 23 2012
%C Also numbers n such that phi(n) = n  sqrt(n).  Michel Lagneau, May 25 2012
%C a(n) = A087112(n,n).  _Reinhard Zumkeller_, Nov 25 2012
%C For n > 1, n is the sum of numbers from A006254(n1) to A168565(n1).  _Vicente Izquierdo Gomez_, Dec 01 2012
%C Numbers whose multiplicative projection (A000026) is equal to their arithmetic derivative (A003415).  _Paolo P. Lava_, Dec 11 2012
%H N. J. A. Sloane, <a href="/A001248/b001248.txt">Table of n, a(n) for n = 1..5000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimePower.html">Prime Power</a>
%H OEIS Wiki, <a href="https://oeis.org/wiki/Index_entries_for_number_of_divisors">Index entries for number of divisors</a>
%F n such that A062799(n)=2  _Benoit Cloitre_, Apr 06 2002
%F a(n)=A000040(n)^(31)=A000040(n)^2, where 3 is the number of divisors of a(n).  _Omar E. Pol_, May 06 2008
%F A000005(a(n)) = 3 or A002033(a(n)) = 2.  _JuriStepan Gerasimov_, Oct 10 2009
%F A033273(a(n)) = 3. [_JuriStepan Gerasimov_, Dec 07 2009]
%p A001248:=n>ithprime(n)^2; seq(A001248(k), k=1..50); # _Wesley Ivan Hurt_, Oct 11 2013
%t Prime[Range[30]]^2 (* _Moshe Levin_, Dec 07 2011 *)
%o (Sage) BB = primes_first_n(36) list = [] for i in range(36): list.append(BB[i]^2) list # _Zerinvary Lajos_, May 15 2007
%o (PARI) forprime(p=2,1e3,print1(p^2", ")) \\ _Charles R Greathouse IV_, Jun 10 2011
%o (PARI) A001248(n)=prime(n)^2 \\ _M. F. Hasler_, Sep 16 2012
%o (Haskell)
%o a001248 n = a001248_list !! (n1)
%o a001248_list = map (^ 2) a000040_list  _Reinhard Zumkeller_, Sep 23 2011
%o (MAGMA) [p^2: p in PrimesUpTo(300)]; // _Vincenzo Librandi_, Mar 27 2014
%Y Cf. A000040, A049001, A024450, A008864, A060800.
%Y Subsequence of A000430.
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_.
