login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001234 Unsigned Stirling numbers of the first kind s(n,7).
(Formerly M5202 N2264)
11
1, 28, 546, 9450, 157773, 2637558, 44990231, 790943153, 14409322928, 272803210680, 5374523477960, 110228466184200, 2353125040549984, 52260903362512720, 1206647803780373360, 28939583397335447760 (list; graph; refs; listen; history; text; internal format)
OFFSET

7,2

COMMENTS

Contribution from Johannes W. Meijer, Oct 20 2009: (Start)

The asymptotic expansion of the higher order exponential integral E(x,m=7,n=1) ~ exp(-x)/x^7*(1 - 28/x + 546/x^2 - 9450/x^3 + 157773/x^4 - ...) leads to the sequence given above. See A163931 for E(x,m,n) information and A163932 for a Maple procedure for the asymptotic expansion.

(End)

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 834.

F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=7..100

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

FORMULA

Let P(n+5,X)=(X+1)(X+2)(X+3)...(X+n+5); then a(n) is the coefficient of X^6; or a(n)=P^(vi)(n+5,0)/6! - Benoit Cloitre, May 09 2002

a(n) = det(S(i+7,j+6)|, 1 <= i,j <= n-7), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 06 2013

EXAMPLE

G.f. = x^7 + 28*x^8 + 546*x^9 + 9450*x^10 + 157773*x^11 + 2637558*x^12 + ...

MAPLE

A001234 := proc(n) abs(combinat[stirling1](n, 7)) ; end: seq(A001234(n), n=7..30) ; # R. J. Mathar, Nov 06 2009

PROG

(PARI) for(n=6, 50, print1(polcoeff(prod(i=1, n, x+i), 6, x), ", "))

(Sage) [stirling_number1(i, 7) for i in xrange(7, 22)] # Zerinvary Lajos, Jun 27 2008

CROSSREFS

Cf. A008275 (Stirling1 triangle).

Cf. A000254, A000399, A000454, A000482, A001233, A243569, A243570.

Sequence in context: A092708 A163198 A278190 * A145149 A062142 A240800

Adjacent sequences:  A001231 A001232 A001233 * A001235 A001236 A001237

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from R. J. Mathar, Nov 06 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 22 00:13 EDT 2017. Contains 289648 sequences.