The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001234 Unsigned Stirling numbers of the first kind s(n,7). (Formerly M5202 N2264) 11
 1, 28, 546, 9450, 157773, 2637558, 44990231, 790943153, 14409322928, 272803210680, 5374523477960, 110228466184200, 2353125040549984, 52260903362512720, 1206647803780373360, 28939583397335447760 (list; graph; refs; listen; history; text; internal format)
 OFFSET 7,2 COMMENTS The asymptotic expansion of the higher order exponential integral E(x,m=7,n=1) ~ exp(-x)/x^7*(1 - 28/x + 546/x^2 - 9450/x^3 + 157773/x^4 - ...) leads to the sequence given above. See A163931 for E(x,m,n) information and A163932 for a Maple procedure for the asymptotic expansion. - Johannes W. Meijer, Oct 20 2009 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 834. F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=7..100 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. FORMULA Let P(n-1,X) = (X+1)(X+2)(X+3)...(X+n-1); then a(n) is the coefficient of X^6; or a(n) = P^(vi)(n-1,0)/6!. - Benoit Cloitre, May 09 2002 [Edited by Petros Hadjicostas, Jun 29 2020 to agree with the offset 7] a(n) = det(|S(i+7,j+6)|, 1 <= i,j <= n-7), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 06 2013 EXAMPLE G.f. = x^7 + 28*x^8 + 546*x^9 + 9450*x^10 + 157773*x^11 + 2637558*x^12 + ... MAPLE A001234 := proc(n) abs(combinat[stirling1](n, 7)) ; end: seq(A001234(n), n=7..30) ; # R. J. Mathar, Nov 06 2009 MATHEMATICA Table[Abs[StirlingS1[n, 7]], {n, 7, 40}] (* Jean-François Alcover, Mar 24 2020 *) PROG (PARI) for(n=6, 50, print1(polcoeff(prod(i=1, n, x+i), 6, x), ", ")) (Sage) [stirling_number1(i, 7) for i in range(7, 22)] # Zerinvary Lajos, Jun 27 2008 CROSSREFS Cf. A008275 (Stirling1 triangle). Cf. A000254, A000399, A000454, A000482, A001233, A243569, A243570. Sequence in context: A163198 A278190 A346322 * A145149 A062142 A240800 Adjacent sequences:  A001231 A001232 A001233 * A001235 A001236 A001237 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from R. J. Mathar, Nov 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 20:34 EDT 2022. Contains 357081 sequences. (Running on oeis4.)